

j OGHOOL

NAVAL POSTGRADUATE SCHOOL

Monterey , California

THESIS

APPLICATIONS OF NEURAL NETWORKS TO
ADAPTIVE CONTROL

by

Russell W. Scott II

December 1989

Thesis Advisor: Prof. D. J. Collins

Approved for Public Release; Distribution is Unlimited.

T248072

UNCLASSIFIED
SECuSif^' ClASSifiCATiON Of This PAGf

REPORT DOCUMENTATION PAGE

\i REPORT SECURITY Classification

Unclassified
\b RESTRICTIVE MARKINGS

2i SECURITY CLASSlflCATION AUTHORITY

2b OECLASSifiCATlON 'DOWNGRADING SCHEDULE

3 DISTRIBUTION/AVAILABILITY Of REPORT

Approved for public release;
distribution is unlimited.

4 PERfORMiNG ORGANIZATION REPORT NUMBER(S) S MONITORING ORGANIZATION REPORT NUM8ER(S)

it NAME Of PERFORMING ORGANIZATION

Naval Postgraduate School
6b OfHCE SYMBOL

(If tppliable)

30.

7» NAME OF MONITORING ORGANIZATION

Naval Postgraduate School

X ADDRESS (dry Sutt. tnd 2iPCode)

Monterey, CA 93943-5000
7b ADDRESS (Cry. SUtt. »nd HP Code)

Monterey, CA 93943-5000

la NAME Of Funding /SPONSORING
ORGANIZATION

8b OFFICE SYMBOL
(H *pplK*blt)

9 PROCUREMENT INSTRUMENT IDE N Tif iCA TlON NUMBER

c ADDRESS (C<fy, Sf*ff. *od Z/PCod#; 10 SOURCE Of FUNDING NUMBERS

PROGRAM
ELEMENT NO

PROJECT
NO

TAS<
NO

WORK UNIT
ACCESSION NO

1 T.TiE {Include Security CUiSiticition)

Applications of Neural Networks to Adaptive Control

' PERSONAL AuThOR(S)
Scott, Russell W. II

3j fY?t Of REPORT

Engineer's Thesis
13d Time covered
f«OM TO

M DATE OF REPORT {Yesr. Month Diy)

Decerr±»er 1989
IS PAGE COoNT

117

i SUPPLEMENTARY NOTATION The views expressed in this thesis are those of the author and do
not reflect the official policy or position of the Department of Defense or the U. S.
Government.

coSATi codes

(EiD GROUP SUBGROUP

18 SuBjECT terms (Continue on reverie it neieutry tnd identify by block number}

Neural Networks, Adaptive Control, Backpropagation,
Parameter Estimation, Parallel Distributed Processing

I £.8S TRACT (Continue on reverte if neceutry tnd identify by block number)

;

The amount of a priori knowledge required to design some modern control systems is
becoming prohibitive. Two current methods addressing this problem are robust control,
in which the control design is insensitive to errors in system knowledge, and adaptive
control, in which the control law is adjusted in response to a continually updated model
of the system. This thesis examines the application of parallel distributed processing
(neural networks) to the problem of adaptive control o The structure of neural networks
is introduced, focusing on the Backpropagation paradigm. A general form of controller
consistent with use in neural networks is developed and combined with a discussion of
linear least squares parameter estimation techniques to suggest a structure for a neural
network adaptive controller. This neural network adaptive control structure is then
applied to a nuinber of estimation and control problems using as a model the longitudinal
motion of the A-4 aircraft. The purpose of this thesis is to develop and demonstrate a
neural network adaptive control structure consistent with adaptive control theory.

1 S'R'3UTiON /AVAILABILITY OF ABSTRACT

Sl^'NCLASSiFiED^NL'MiTED D SAME AS RPT Q OTiC USERS

Zl ABSTRACT SECURITY CLASSIFICATION

Unclassified
» NAME Of RESPONSIBLE iNDiViDUAL
Dr. D. J. Collins

2ib TELEPHONE (/nc/ud* Are* Code)

(408) 646-2826
;Zc OFFICE SYMBOL

67Co

)FORM 1473. 84 MAR 83 APR edition m*y be used gnt.i e«h«ujTed

AM other edit.ons *'e obsolete

i

SECURITY CLASS IF ICATION OF thiS PAGE

UNCLASSIFIED

Approved for Public release; distribution unlimited.

APPLICATIONS OF NEURAL NETWORKS TO ADAPTIVE CONTROL

by

Russell W. Scott II

Lieutenant, United States Navy
B.S.M.E., United States Naval Academy, 1981

M.S.A.E., Naval Postgraduate School, March 1989

Submitted in partial fulfillment of the

requirements for the degree of

AERONAUTICAL ENGINEER

from the

NAVAL POSTGRADUATE SCHOOL
December 1989

ABSTRACT

The amount of a priori knowledge required to design some modern control systems is

becoming prohibitive. Two current methods addressing this problem are robust control, in

which the control design is insensitive to errors in system knowledge, and adaptive control,

in which the control law is adjusted in response to a continually updated model of the system.

This thesis examines the application of parallel distributed processing (neural networks) to

the problem of adaptive control. The structure of neural networks is introduced, focusing

on the Backpropagation paradigm. A general form of controller consistent with use in neural

networks is developed and combined with a discussion of linear least squares parameter

estimation techniques to suggest a structure for neural network adaptive controllers. This

neural network adaptive control structure is then applied to a number of estimation and

control problems using as a model the longitudinal motion of the A-4 aircraft. The purpose

of this thesis is to develop and demonstrate a neural network adaptive control structure

consistent with adaptive control theory.

Ill

U
THESIS DISCLAIMER

The reader is cautioned that computer programs developed in this research may not

have been exercised for all cases of interest. While every effort has been made, within the

time available, to ensure that the programs are free of computational and logic errors, they

cannot be considered validated. Any application of these programs without additional

verification is at the risk of the user.

IV

TABLE OF CONTENTS

I. INTRODUCTION 1

II. NEURAL NETWORK THEORY 3

A. NEURAL NETWORK PROCESSING 3

B. NEURAL NETWORK ARCHITECTURE 4

1. Processing Elements 4

2. State of Activation 6

3. Connections 6

4. Activation Rule 7

5. Propagation Rule 8

6. Learning Rule 8

7. Environment 8

C. NEURAL NETWORK OPERATION 9

D. BACKPROPAGATION ALGORITHM 9

1. Architecture 10

2. Backpropagation Learning Rule 10

3. The Backpropagation Activation Rule 13

4. The Power of the Backpropagation Neural Network 16

III. ADAPTIVE CONTROL THEORY 17

A. ONE STEP AHEAD PREDICTION CONTROL 17

B. LINEAR LEAST SQUARES ESTIMATION 20

C. NEURAL NETWORKS AND ADAPTIVE CONTROL 22

IV. NEURAL NETWORK ADAPTIVE CONTROL STRUCTURES 24

A. PARALLEL STRUCTURE 24

B. SEQUENTIAL STRUCTURE 26

V. EXPERIMENTAL SETUP 30

A. HARDWARE-SOFTWARE PACKAGE 30

B. LONGITUDINAL MOTION OF THE A-4 AIRCRAFT 32

C. EXPERIMENTAL DESIGN CONSIDERATIONS 37

1. Control Design Issues 37

2. Estimation Design Issues 39

a. Input-Output Selection 39

b. Model Selection 44

3. Validation Issues 48

D. SUMMARY OF EXPERIMENTAL SETUP 49

VI. RESULTS AND DISCUSSION 50

A. NEURAL NETWORK STABILITY CHARACTERISTICS 50

B. THE NEURAL NETWORK ADAPTIVE CONTROLLER IN

ESTIMATION 56

1. Linear Neural Network Parameterized as Four Transfer Functions . . 56

2. Fully Connected Linear Neural Network 63

3. Nonlinear Neural Network Estimators 65

4. Nonlinear Network Modelling Linear System 66

5. Multiple Condition Nonlinear Neural Network Estimator 67

C. CONTROL USING THE NEURAL NETWORK ADAPTIVE

CONTROLLER 70

D. SUMMARY 74

VII. CONCLUSIONS AND RECOMMENDATIONS 78

REFERENCES 81

APPENDIX A: NEURALWORKS PROFESSIONAL II ASSOCIATED

PROGRAMS 82

APPENDIX B: MATLAB M-FILE 97

VI

APPENDIX C: CONTINUOUS STATE SPACE EQUATIONS AND DISCRETE

MATRIX POLYNOMIALS 98

INITIAL DISTRIBUTION LIST 103

Vll

LIST OF TABLES

Table I: Flight Conditions Selected for Study 34

Table II: Parameters for Flight Condition Sea Level/Mach 0.4 with a Sampling Time

of 0.1 Seconds 37

Table III: Poles and Zeros of the Discrete Simulation for Condition 1 with a Sampling

Time of 0.1 Seconds 38

Table IV: Network Weights at 5,000 and 5,000,000 Cycles 57

VllI

LIST OF FIGURES

Figure 1: A Typical Neural Network Structure 5

Figure 2: A Typical Processing Element 5

Figure 3: Neuralworks Professional II Activation Function Logic 7

Figure 4: Plot of the Sigmoid Activation Function 14

Figure 5: Plot of the Hyperbolic Tangent Activation Function 15

Figure 6: Adaptive Control Structure 18

Figure 7: Model Reference Adaptive Control Structure 23

Figure 8: Parallel Neural Network Adaptive Controller 25

Figure 9: Sequential Neural Network Adaptive Controller: Estimation Phase 26

Figure 10: Sequential Neural Network Adaptive Controller: Control Phase 27

Figure 1 1: A-4 Frequency Response 34

Figure 12: Frequency Response for Discrete A-4 Longitudinal Motion Simulation ... 36

Figure 13: The Effect of Sampling Rate on Poles and Zeros 41

Figure 14: Effect of Sampling Rate on Excitation 42

Figure 15: Neural Network Adaptive Controller Structure for A-4 Longitudinal

Motion 45

Figure 16: Non-linear Neural Network Adaptive Controller Structure for A-4

Longitudinal Motion/Multiple Conditions 46

Figure 17: Network Static Stability for u(t) 52

Figure 18: Network Static Stability for a(t) 52

Figure 19: Network Static Stability for q(t) 53

Figure 20: Network Static Stability for 0(t) 53

Figure 21: Network Dynamic Stability for u(t) 54

Figure 22: Network Dynamic Stability for a(t) 54

Figure 23: Network Dynamic Stability for q(t) 55

IX

Figure 24: Network Dynamic Stability for 9(t) 55

Figure 25: Input Characteristics 59

Figure 26: Plant Response 60

Figure 27: Prediction Error 60

Figure 28: Frequency Response for u(t) for Various Amounts of Training 61

Figure 29: Frequency Response for a(t) for Various Amounts of Training 61

Figure 30: Frequency Response for q(t) for Various Amounts of Training 62

Figure 31: Frequency Response for 0(t) for Various Amounts of Training 62

Figure 32: Pseudo Random Binary Input Sequence and Spectral Content 63

Figure 33: Prediction Error for Fully Connected Network 65

Figure 34: Spectral Transfer Function for u(t)/Nonlinear Hidden Layer 68

Figure 35; Spectral Transfer Function for a(t)/Nonlinear Hidden Layer 68

Figure 36: Spectral Transfer Function for q(t)/Nonlinear Hidden Layer 69

Figure 37: Spectral Transfer Function for 0(t)/Nonlinear Hidden Layer 69

Figure 38: Spectral Transfer Function for u(t)/Untrained Condition 71

Figure 39: Spectral Transfer Function for ci!(t)/Untrained Condition 71

Figure 40: Spectral Transfer Function for q(t)/Untrained Condition 72

Figure 41: Spectral Transfer Function for 0(t)/Untrained Condition 72

Figure 42: Network Determined Control Input/Noise Rejection 75

Figure 43: Estimation and Tracking Error for u(t)/Noise Rejection 75

Figure 44: Estimation and Tracking Error for a(t)/Noise Rejection 76

Figure 45: Estimation and TRacking Error for q(t)/Noise Rejection 76

Figure 46: Estimation and Tracking Error for 6(t)/Noise Rejection 77

ACKNOWLEDGEMENTS

A work such as this which involves the expenditure of large amounts of time and

effort can never be accomplished through the labors of a single individual. As I sit down

to complete this thesis, it is difficult to find the words to adequately express appreciation

for the contributions of the many people who have made the completion of the task possible.

Special thanks go to Professor Dan Collins, my thesis advisor, for providing me with the

tools, both theoretical and physical, to accomplish this research. Thanks also to Professors

Roberto Cristi and Jeff Burl for filling in the gaps in my knowledge of control theory, and

to Professor Jim Hauser who served as the second reader for this thesis. Many thanks to the

number of colleagues and friends with whom I shared my thoughts and from whom I

received much guidance. Finally, a special thank you to my wife Eola and my daughter

Amanda without whose patience and understanding none of this could have been possible.

XI

I. INTRODUCTION

The classical control process involves eliciting a desired response from a known system.

Determination of this known system is a non-trivial matter which can make the design of a

control system difficult. As control algorithms become more powerful they require larger

amount of a priori knowledge of system behavior. At the same time as systems become

more complex the amount of uncertainty--plant variations, environmental disturbances, and

random noise- -which effects the system is increased. Two different approaches exist to

handle this problem. The first involves designing robust controllers, controllers which

provide good performance over a large range of uncertainty. The second, called adaptive

control, involves a controller which alters the control law to compensate for system changes.

The requirements of some current systems exceed the capabilities of either robust or adaptive

control. The combination of these two approaches, robust adaptive control, is a promising

new field of study.

Traditionally control of complex systems which require robustness and adaptation has

been provided by human intervention. If human intelligence is the key to this type of

control, perhaps a controller modelled on the capabilities of the brain may provide an

alternative solution to the development of robust adaptive control. Neural networks are

intended to provide a processing structure similar to the structure of the brain. The

significant attributes of this structure are its parallel and distributed nature. This parallel

distributed processing (PDP) structure is a natural form for the modelling of adaptive control

problems. [Ref. 1]

This thesis will investigate the application of neural networks, also known as

neurocomputing, to adaptive control. The purpose of this investigation is to develop and

demonstrate a structure for the study of neural networks in adaptive control which is

consistent with adaptive control theory. In Chapter II, neural networks are introduced and

the Backpropagation neural network is presented. Chapter III describes the two separate

functions of adaptive control--estimation and control. From control theory a controller

suitable for implementation in a neural network application is developed. The linear least

squares estimation process is then introduced and the concept of a neural network as an

estimator is described. Chapter IV combines the theories of neural networks and adaptive

control to develop parallel distributed processing structures for estimation and control.

Chapter V describes the setup of this computational experiment. The system of longitudinal

motion for the A-4 aircraft is introduced as a system upon which to perform investigations

in the use of neural networks for estimation and control. Chapter VI describes specific

applications of these neural network structures to adaptive control. Chapter VII includes

some concluding remarks and recommendations for further study. The objective of this

thesis is to demonstrate the natural manner in which adaptive control problems can be

represented using neural network structures.

II. NEURAL NETWORK THEORY

Neural networks represent a revolutionary new way of computing. Biological systems

perform many tasks better than conventional computers. Artificial intelligence advocates

believe that the development of powerful software is necessary to capture the power of the

brain. Neural networks represent instead an attempt to imitate the capabilities of the brain

in hardware. Neural networks are based on the idea that the brain utilizes a computational

architecture different from that of the classical computer. An understanding of the basis for

this architecture will provide a framework for investigations in neurocomputing. In this

chapter, the theory of neural networks will be introduced. The concept of neural network

processing is developed first on an intuitive level and then specifics of neural network

architecture are presented. Following development of the neural network, the powerful

Backpropagation neural network structure is introduced. With the understanding of these

concepts, applications of neural networks to various problems may be easily understood.

More thorough discussions of neural networks may be found in [Ref. 2] and [Ref. 3].

A. NEURAL NETWORK PROCESSING

Examining the operation of the brain in the context of computer processing may help

to explain how neural networks work. The brain is a parallel processor. This parallelism

allows the brain which operates at about 100 Hz to outperform computers operating at nearly

1,000,000 times that speed. Processing in the brain is parallel on a massive scale. The human

neurological system contains billions of neurons. The brain is also a highly distributed

processing system. Contrary to the conventional concept of a Central Processing Unit, the

brain consists of numerous interrelated yet independent processors. These include not only

the various regions of the brain but the millions of neurons which make up the senses. The

processors in the brain are very simple compared to classical computers. By combining these

traits--massive parallelism, distributed processing, and simplicity--neural networks hope to

emulate the problem solving characteristics of the brain. In this way, a neural network may

be thought of as a Massively Parallel Distributed Processor. [Ref. 2:pp. ix-xi]

B. NEURAL NETWORK ARCHITECTURE

Every neural network paradigm is composed of the same architectural components.

These structural and algorithmic factors include:

A set of processing elements

A state of activation for the network

A pattern of connections

An activation rule

A propagation rule

A learning rule

An environmental interface

A network level illustration of the interaction of these elements is given in Figure 1.

Computational processing elements which have some state of activation are connected in some

pattern which interfaces with the environment through input and output elements. A

depiction of the interactions of a single element is shown in Figure 2. Each element has an

activation function and connections which are controlled by propagation and learning rules.

These components will be described in detail below. [Ref.2:pp. 45-54]

1. Processing Elements

Neural networks are composed of a number of simple computational units called

processing elements. All of these units act independently without the supervision of some

global control. Simply put, a unit receives data from some of its neighbors on its input side,

processes that data, then sends the result on to the same or other neighbors from its output

side. The system is highly parallel because the operation of each element may occur

simultaneously. Elements may have some physical significance or may be instead an abstract

construct of the neural network. In this way, processing elements may be divided into three

categories by their function. Input units represent access into the network from the physical

Output Patterns

lot*rn«l
Representation
Units

Input Patterns

Figure 1: A Typical Neural Network Structure

= X W.. X . summation

= f(l) transfer

Weigtits
Output
path

Processing
element

Figure 2: A Typical Processing Element

world. Output units represent the results of network operation. Hidden units are the abstract

constructs developed by the system to solve the problem. From the viewpoint of control

theory, input units may be considered to be elements of an input variable, output elements

may be thought of as elements of an output variable, and hidden units may be conceived of

as elements of a state variable. In this way, the neural network may be considered as a

hardware implementation of state space and output equations. [Ref. 2:pp. 45-54]

2. State of Activation

The importance of these independent processors is that the elements represent

subsystems of the total problem, which may be summarized by the global state of the

network. At any moment in time, each processing element has a certain level of activation.

It is the pattern and levels of these activations which represents the state of the system at a

given time. The aggregate of these activations may be thought of as a multi-dimensional

array which carves out some surface in space. Processing in this type of network may be

thought of as evolving a system forward in time from some initial conditions to some steady-

state value. [Ref. 2:pp. 45-54]

Considering possible interpretations of the number five is a simple example of

the difference between this and classical computing. In a computer, the number five would

be represented by some code stored in a location in memory. In a neural network, the

number could be represented by the activations of five different processing elements, the

total of which is five. The problem might actually be how to optimally store five tons of

wheat in five grain elevators of different sizes. In this case, the activation of each element

represents the amount of grain in that elevator. It should be apparent that this distributed

processing form provides a more natural environment in which to solve certain classes of

problems.

3. Connections

If the activations of the processing elements may be thought of as the states of

the system, the connections may be thought of as the dependencies. These are the parts of

the network which determine which processing elements react with each other and in what

manner. A connection may be envisioned as taking the activation from the output side of

a processing element, operating on it, and transporting it to the input side of a neighboring

element. In most cases, the contribution of each element is considered to be additive.

Therefore, the input of any unit may be considered to be the weighted sum of the activations

of the units connected to its input side. More complex input weighting functions involving

products as well as summations have also been proposed. The structural dependencies of the

network are determined by these connections. [Ref. 2:pp. 45-54]

4. Activation Rule

The activation rule determines the activation value of the processing element

given a set of inputs. Figure 3 gives an example of the complexity of the activation function

from the Neuralworks Professional II neural network development software. Activations may

be discrete or continuous, bounded or unbounded, stochastic or deterministic. Activations

Learning Rule

WO

Summalion
Function

W14
Wn iH

Sum
Max
Min

Majority

Product

etc.

Hebb
Kohonen

etc.

Learning and Recall

Schedule

Recall

Rring Rale

Input Clamp
Temperature

Gain

Learning

Coedidenl 1 [_
CoelfidenI 2

Temperature

f Super-Layer

Transfer

Function Scaling Limiting

Output

Function

-^

Linear

Sigmoid
Sgn
BAM

Percept ron

etc

Noise

Gene-
rator

T—K

sX + o

1 1 1—

r

Oflset

Scale Factor

Direct

Highest

Two Highest

Adaline

%—nr

PE
Enable

High Limit

Low Limit

Recall Cyde Counter

Learning Cyde Counter
Competitive Inputs

Figure 3: Neuralworks Professional II Activation Function Logic

may contain a summation function, a transfer function, scaling, limiting, thresholding, and

competition. Through the use of complex activation functions the network may model a

variety of nonlinear systems. [Ref. 3:pp. 146]

5. Propagation Rule

The propagation rule is the precept which dictates how the activations of units

are transferred to the inputs of other units. All neural networks have a propagation rule.

This may be thought of the procedure for feed forward operation of the network. This rule

ties input elements, connections, and output elements together. It governs not only the

connection function, but the order in which connections are made, both architecturally and

by type. This succession may be sequential, by layer, random, or perhaps by the properties

of the connections or elements. The propagation rule regulates the feed forward operation

of the network. [Ref. 2:pp. 45-54]

6. Learning Rule

As the propagation rule may be thought of as the rule for the feed forward

behavior of the network, the learning rule may be thought of as the feedback rule. Some

networks do not use feedback and therefore require no learning rule. For networks which

do learn, this complex function changes the structure of the network to reflect given

interactions at each instant. The learning rule may change either the activations of the

networks processing elements or the connections between elements or both. This change is

based on the state of activations of the network, the network connection weights, and often

some desired result. Networks which attempt to map some input into a desired result are

known as supervised learning networks. Usually, the activations of the elements are allowed

to change during feed forward operation governed by the propagation rule while the learning

rule changes the connection weights during feedback operation. [Ref. 2:pp. 45-54]]

7. Environment

The interface between the neural network and the environment is as important

as the network itself. Determination of such things as the number of inputs, the timing of

inputs, and the input character itself is extremely important. A neural network is not a

panacea for all problems, but a new form of processing tool to be used in applications where

both the problem and parallel distributed processing are understood. The consequence of the

importance of these design considerations is that the user of a neural network must be

familiar with both neural networks and the domain of the problem to be solved. [Ref. 2:pp.

45-54]

C. NEURAL NETWORK OPERATION

A neural network consists of numerous processing elements which are connected to

the environment through input and output units. These elements are attached by weighted

connections which are meant to represent some form of dependency. Each element also has

an activation function. Network operation consists of a feed forward phase and in some cases

a feedback phase. The feed forward phase is governed by the propagation rule. In this

phase, the activation of each element is altered in response to its connections, activation

function, and some input. The learning rule controls the feedback phase. In this phase, the

connection weights of an element are changed in response to its connections, the network's

state of activation, and some desired result. Once this is complete, the process is repeated

until the desired outcome is achieved. [Ref. 3:pp. 3-10]

D. BACKPROPAGATION ALGORITHM

In the 1950's and 1960's, neurocomputing was in its infancy. Many successful, though

limited, applications of neural networks were developed. Most of these involved networks

using simple activation rules grouped into input and output layers. In 1969 Minsky and

Papert, two MIT artificial intelligence researchers, published a book called Perceptrons in

which they showed that networks must use hidden layers in order to sufficiently solve most

problems. Unfortunately, at the time, no learning rule or activation rule capable of

exploiting the power of hidden layers existed. Because of this, neurocomputing went into

a state of dormancy for nearly thirty years. One major reason for the resurgence of interest

in neural networks is the development of the Backpropagation paradigm, a type of network

which successfully uses hidden units. The architecture, learning rule and activation functions

of a Backpropagation neural network combined give this network the capability to utilize

hidden layers in order to solve complex problems. [Ref. 2:pp. 111-112]

1. Architecture

A Backpropagation neural network is laid out in a relatively simple,

straightforward manner. The processing elements are arranged in a number of parallel layers

including an input layer, an output layer, and any number of hidden layers. The elements

in each layer are usually fully interconnected with the elements in a previous layer as in

Figure 1. Any N-dimensional feature space may be represented with the use of a suitable

activation function and a sufficient number of hidden units [Ref. 4]. Operation of the

network involves presentation of a set of input-output pairs or patterns. This process is

known as supervised learning. The network first feeds forward the input to the hidden and

output layers. Then in the feedback phase, the error between the network produced result

and the desired output is used to alter the connection weights, or dependencies of the

network. This process may be imagined alternatively as carving out some N-dimensional

feature space, performing some massively parallel regression, or encoding the inputs into state

variables which are in turn combined to give outputs. It is the ability of the

Backpropagation neural network to capitalize on the capabilities of hidden units to represent

any feature space which makes it so powerful. [Ref. 2:pp. 318-328]

2. Backpropagation Learning Rule

The power of hidden layers is useless without a learning rule which can utilize

them. One problem with hidden layers has been determining how to distribute

responsibilities for network error. The Backpropagation learning rule does this by

minimizing a global cost function with respect to the connection weights in a least squares

sense. This is an implementation of a gradient descent procedure on the error surface in

weight space. The application of this concept to output layers is straight forward, however,

extension of the concept to hidden layers is more complex. [Ref. 2:pp. 318-328]

For elements in the output layer, minimization of the square of the errors is

derived in the traditional least squares fashion. The global square error cost function, J, may

be expressed as

J = ^EkEo(To(k)-Xo(k))2 (2.1)

where TJi^k) denotes some target output for pattern k and XJ^k) indicates the activation of

output element o resulting from pattern k. The output (activation) of an element is produced

using a function of the net input to the element

X„(k) = f (l„(k)) (2.2)

where Io(k) represents the net input to element o given by

lo = Zi (woi X.) (2.3)

where w^^ is the weight connecting element i to element o and Xj is the activation of element

1. The function f is known as the activation function. By changing the weights in proportion

to the derivative of the cost function, the error may be minimized. If the cost function is

to be minimized for each instant (pattern) and with respect to individual weights, the

derivative of J may be taken inside of the summations, allowing the subscripts to be dropped.

The derivative of the cost function can be broken down into three elements using the chain

rule

d] di dx^ d\^

(2.4)

5w^j aX„5I,, 3w„.

where the first term denotes the derivative of the cost function with respect to the activation

function, the second term denotes the derivative of the activation function with respect to

the net input to the element, and third term denotes the derivative of the net input to an

element with respect to the weights entering the element. Solving for these terms gives

di— = (T, - XJ (2.5)

the error between the target output and the element activation for the first term using

equation (2.1) dX^— =nio) (2.6)

<51o

the derivative of the activation function for the second term using (2.2), and for the third

term using (2.3)

aio
= X„ (2.7)

the activation of the element. By combining (2.5), (2.6), and (2.7) and adding a constant of

proportionality, a, the basis of the Backpropagation learning rule is defined

^^oj = <> 5, X, (2.8)

where 5^ is an error term defined as the combination of (2.5) and (2.6)

^o = nio) (
VX,) (2.9)

The constant of proportionality, a, is known as the learning rate. For elements in the output

layer, this algorithm is relatively straight forward. But how can S be defined for hidden

layers? This is the error assignment problem the solution of which makes Backpropagation

such a powerful technique. [Ref. 2:pp. 318-328]

The Backpropagation network assumes that each processing element is in some

way responsible for the error in the output. The learning rule operates much as the name

implies to distribute the error. By "backpropagating" the error along the same connections

and with the same weights used in the feed forward cycle, the network assigns a portion of

the error to each processing element. The learning rule for hidden layers is identical to that

for the output layer (2.9), with the exception that S for hidden units is defined as the

derivative of the activation function multiplied by the S backpropagated from the previous

layer, or

5j = ^'(V^o(% U (2.10)

where the summation is over the elements to which the hidden element j is connected. The

subscript o need not denote the output layer, but can denote any layer to which the output

of element j is connected. The Backpropagation network can thus be said to operate in a

similar manner to other neural networks. First, the input is fed forward through the network

to determine the output activations. These activations are then compared to the desired

outputs and the error is fed back through the network. Finally, the weights connecting the

elements are changed using the learning rule and the fed back error. The true power of the

Backpropagation network lies in its ability to use hidden layers. [Ref. 2:pp. 322-328]

One drawback to the use of a gradient descent method for learning is that the

network training follows a very jagged path in the error-weight space. This is obvious when

one considers that the probability of two consecutive error vectors in weight space pointing

in the same direction is zero. Therefore, the network tends to wander about in weight space,

oscillating across the optimal path to a global minimum. One solution to this problem is to

average the current estimate of the proper direction with past estimates. This is accomplished

by adding what is known as a momentum term to (2.9)

Aw^j(t+I) = a6^X^ + ^i Aw^ft) (2.1 1)

where /x is another constant of proportionality. In the past a and /x have been determined

empirically, however the results of recent research recommend a number of ways to statically

and dynamically determine appropriate values for these constants. [Ref. 2:pp. 329-330]

3. The Backpropagation Activation Rule

The activation function used in this type of neural network must be compatible

with the learning rule described above. This implies that the activation rule must be

differentiable over the entire range of possible values. Another desirable characteristic of

an activation function is that the function have a unique output value for a given input

value. Monotonic functions have unique output values for given inputs with the added

advantage that the behavior of the activation function is predictable (an increase in the input

always implies an increase in the output.) Typically, the input to a processing element (2.3)

is defined as the weighted sum of the activations of the elements connected to its input side

1, = G * Ej (w.. Xj) (2.12)

Where G is some gain added as a scaling factor. At first glance, a linear activation function

appears to be ideal. The output value, or activation, of a processing element using the linear

13

activation function is simply

f(I) = I (2.13)

where the subscript i is dropped for convenience. The derivative of this function is simply

a constant, which can be absorbed in the learning rate (proportionality constant) defined

above. However, as Minsky and Papert proved, linear networks are only capable of

representing linear systems. They can not exploit the power of hidden layers. Neural

networks utilizing the semi-linear functions capitalize on the strengths of the linear function

and the use of hidden layers. Two semi-linear functions are the sigmoid and hyperbolic

tangent functions. For the sigmoid function (shown in Figure 4), the activation is

1

f(I) =

1 + e-

(2.13)

S gmo A CI V a t on F unc t 1 on

9

^

/-

:;;:/[
u ti

7
u 7 7 ^

D
a
D
O

/ ;

c
1
E /

/ ;

u 3

/ 1

u 2
i

/

'
T"

y : Ga p n = 1 oj

r _1^^ ^

! 1 ^

U

- a - 6 A

E 1 erne, n;

2 4 6 a

Figure 4: Plot of the Sigmoid Activation Function

14

and the derivative is

f'(I) =

(1 + e-')2

(2.14)

or in terms of the original function

f'(I) = f(I)*(l -f(I)) (2.15)

Notice the sigmoid is limited to values between and 1. Perhaps a better activation, due to

its range, is the hyperbolic tangent activation function (shown in Figure 5)

f(I) =
e' - e-'

e' + e-'

(2.16)

HyperDoiic Tangent Activation Function

E I ement i np jt

Figure 5: Plot of the Hyperbolic Tangent Activation Function

15

whose derivative expressed in terms of the original function is

r(I) = (1 +f(I))*(l - f(I)) (2.17)

These activation functions share two very important qualities. First, by expressing the

derivative in terms of the activation function, a large amount of computation time is saved.

Second, these non-linear functions approximate linear functions over some central region

while guaranteeing stability at its extremities. These are the most widely used activation

functions. [Ref. 3:pp. 161-163]

Another proposed activation function is the sine wave. This may be thought of

as performing some type of "Generalized Fourier Analysis." It is thought that a neural

network using sine wave activation functions may perform some modal decomposition,

discovering important spectral components of the function described by the input-output

pairs. Research is ongoing in this area. [Ref. 3:pp. 449-450]

4. The Power of the Backpropagation Neural Network

The power of the Backpropagation neural network rests in its extension of

classical methods to the use of hidden constructs. By using the concept of a gradient descent

search algorithm, the Backpropagation neural network incorporates all of the theory

developed for these types of algorithms. At the same time, using parallel processing and

hidden layers, the Backpropagation neural network is capable of extending its scope beyond

that of linear systems to that of any N-dimensional system. The are a number of similarities

between the Backpropagation network and traditional methods of estimation.

In this chapter, the theory of neural networks was introduced to provide an

understanding of this processing tool. An intuitive approach was first described, followed

by a detailed description of the building blocks of a neural network. Following a summary

of the operation of a neural network, the Backpropagation neural network was introduced

and important characteristics described. Finally, the power of the Backpropagation neural

network was outlined. As will be seen in the next chapter, the concepts behind

Backpropagation are very closely related to those of adaptive control, especially the

estimation process.

16

III. ADAPTIVE CONTROL THEORY

From a general perspective, an adaptive controller is one which changes the control as

it perceives changes in the environment or system. The need for adaptive techniques arises

when a system and its environment can not physically or practically be completely specified.

The general definition given above suggests that adaptive control may be divided into two

functions--a model estimation function and a control function. The basic layout of an

adaptive controller is given in Figure 6. The separability of the two tasks illustrated in the

figure permits the adaptive control designer to select from numerous control techniques and

estimation methods. For the purposes of this thesis, the concentration will be on the control

and estimation of deterministic systems. These are systems in which noise is relatively

unimportant with respect to modelling errors. In this chapter the relatively simple one step

ahead control algorithm will be used to introduce a general controller followed by an

examination of the linear least squares estimator. Further information on the topic of

adaptive control is available in [Ref. 5] while specific information on estimation is available

in [Ref. 6]. As a summary, the natural way in which neural networks represent these

techniques will be delineated.

A. ONE STEP AHEAD PREDICTION CONTROL

One step ahead prediction control is defined as that control necessary to bring a system

to some desired state in one step. For most control applications it is assumed that the system

under consideration is linear, time-invariant, and causal. Of the many equivalent models of

this type for a system, the simplest to use in developing adaptive control algorithms is the

discrete time deterministic autoregressive moving average (DARMA) model. The DARMA

model is characterized by the equation

A(q) Y(t) = B(q) u(t) (3.1)

17

Inputs

t>

Disturbances

iz

System

Parameter

estimator C

Parameters

\l

Control law

7T

C

Objectives

Outputs

Figure 6: Adaptive Control Structure

where

A(q) = I + A,(q) + A,{q) ...

B(q) = Bq + Bi(q) ...

and A(q) and B(q) are matrix polynomials in the backward shift operator, q"\ Y(t) is the

system output, and u(t) is the system input. The DARMA model is roughly equivalent to a

transfer function or a controllable-observable state space representation of the system [Ref.

5:pp. 7-40]. If a single input single output (SISO) DARMA model is expanded in the shift

operator and rearranged the equation becomes

y(t) = biu(t-l) + b2u(t-2) ... - aiy(t-l) - a2y(t-2) ... (3.2)

This equation can be used as a predictor for the output at the next time step

9(t+l) = bi u(t) + b2 u(t-l) ... - aj y(t) - a2 y(t-l)... (3.3)

where y(t+l) indicates the predicted value for y(t+l). Equation (3.3) can be used to

determine the control input required to bring the system to a desired value yd(t+l) in one

step by replacing the variable y(t+l) with the desired value y^Ct+l) and solving the equation

for u(t)

u(t) = 1/bi {yd(t+l) + ai y(t) + a2 y(t-l) ... - b2 u(t-l) ... } (3.4)

This is known as one step ahead prediction control. [Ref. 5:pp. 118-171]

The one step ahead prediction control law is the result of the minimization of the

quadratic cost function

J(t) = i{y(t+1)- yd(t+l)}- (3.5)

A variety of cost functions of the same form may be developed using different forms of the

input and output variables. The consequence of this is that the control law in (3.4) may

represent any number of different control strategies. [Ref. 6:pp. 461-481]

Using this concept of many strategies being represented by one form of controller

introduces the idea of a general control structure. In (3.4) the y(j(t+l) term may be

conceptualized in a number of different ways. In general, it may be thought of as some

reference input to the system. This implies some type of tracking control. If this reference

input is generated by some reference model, the one step ahead controller becomes a model

reference (MR) controller. If the past values of u(t) and y(t) are thought of as state variables,

the one step ahead controller becomes some type of state variable feedback with a reference

input controller

u(t) = K(t)x(t) + r(t) (3.6)

All of these controller types have the same basic structure, the only difference is in the

determination of the relevant parameters. The vector of past inputs and outputs in equation

19

(3.4) becomes the state variable in equation (3.6) to provide a controller for an adaptive

algorithm. [Ref . 5:pp. 118-171]

One step ahead control provides a simple method of introducing a general controller

structure. Using the vector of past input and output measurements as some state vector, the

idea of a controller based on the weighted sum of state variables and a reference input may

be developed. Equation (2.3) defines the input to a neural network processing element to be

the weighted sum of the element activations connected to its input side. Thus a neural

network processing element may in some way represent this general form of controller.

B. LINEAR LEAST SQUARES ESTIMATION

Adaptive control is composed of two functions, estimation and control. Numerous

techniques exist to develop estimators for systems, however, the majority involve extensive

off line computation. By far the largest category of on line estimation techniques develops

estimates of the system parameters based on minimization of quadratic cost functions similar

to that used in the development of the one step ahead controller. By deriving one form of

these linear least squares estimators, the recursive least squares method, a general structure

for estimation will be developed.

The derivation commences with the SISO version of the DARMA model introduced in

equation (3.1). Upon expansion, this expression is equivalent to

y(t) = ^j bj u(t-j) - Ek ^k y(t-'<) (3.7)

where the index j represents dependencies on past input measurements and the index k

represents dependencies on past output measurements. Since this is a linear, time invariant

system the coefficients, a,j and b-, and the past input-output data may be grouped separately

to give

y{x) = e'^4>ii-\) (3.8)

where is called the parameter vector defined by

^ =
[bo bi b, ... aj a. aj ...] (3.9)

20

and <^(t-l) is a the regression vector containing past measurements of the input and output

^(t-1) = [u(t) u(t-l) u(t-2) ... -y(t-l) -y(t-2) -y(t-3)...] (3.10)

Using this relationship, the value of y(t) at a future time may be predicted as in (3.3)

y(t) = ^'r^(t-l) (3.11)

The error in this prediction is used in a quadratic cost function to determine some optimal

value for 6. [Ref. 6:pp. 51-59]

A linear, time-invariant, deterministic system has a single parameter vector but many

regression vectors, each representing measurements made at a given time step. Therefore,

a quadratic cost function in the prediction error can be formed using equation (3.1 1) and the

measured output at a given time t

JW = ii:,(y(t)-^'^^(t-l))" (3.12)

where t covers the range of the N measurements made. Differentiating with respect to the

parameter vector, 6, and setting the result equal to zero results in an expression of the form

e = [i/N I, ^(t) <f>\t)y^ i/N Zt <f>(^) y(t) (3-13)

where is the estimated parameter vector [Ref. 6:pp. 176-181]. Making some assumptions

on the content of the result of this summation and applying the matrix inversion lemma three

equations for determination of the parameter vector are obtained

0(t+l) = 0(t) + L(t) (y(t) - 0^(t) <t>U-\)) (3.14)

L(t) = P(t-l) 4>{t-\) [I + At- 1) P(t-l) <Pi\-i)Y^

P(t) = P(t-l)
?H-\)f\l-\)4H-\) P(t-l)

1 + At-1) P(t-l)<^(t-l)

where P at time zero is some positive, definite matrix representing the confidence in an

initial estimate at time zero. The first equation is a predictor-corrector equation while

the second and third equations represent some method of changing the estimation gain. This

is known as the recursive least squares estimation method. The equations (3.14) are easily

expanded to the multivariable case. This is a very robust form of estimator. [Ref. 6:pp. 303-

310]

21

A more general form of this predictor corrector equation is the basis for all least

squares parameter estimation schemes. This equation is

0(t+l) = e(t) + M(t) ^(t-1) e(t) (3.15)

where the terms in the equation are defined as

M(t) - the algorithm gain

^(t-1) - the regression vector

e(t) - the prediction error

Similar in context to the general structure developed above for controls, the gain, regression

vector, and prediction error used in the least squares estimator result from the particular cost

function which is minimized and the various assumptions made about the character of the

estimation process. The gain term can vary from a scalar constant to a large covariance

matrix as seen in (3.14). The regression vector and prediction error may likewise take on a

number of different forms. [Ref. 5:pp. 47-100]

One significant factor in this derivation is the fact that the Backpropagation learning

rule in equation (2.8) is similar to the general form of the linear least squares parameter

estimator in equation (3.15). In fact, a neural network with a linear activation function is

a parallel distributed processing implementation of the general linear least squares estimator.

The theorems and proofs applicable to least squares estimation are in a general sense

applicable to the Backpropagation neural network. Another major factor concerns the

structured form of both the estimation algorithm developed above. This suggests that the

capability of neural networks to naturally represent structured problems may prove useful

in estimation applications.

C. NEURAL NETWORKS AND ADAPTIVE CONTROL

By combining the control and estimation algorithms described above, an adaptive

controller may be constructed. The control law determines control inputs using the estimated

model as if it were the true model. More importantly from the point of view of neural

network applications is the general structure developed for control and estimation. For the

22

controller, the input is generated as some weighted sum of terms in a regression vector. In

the case of model reference adaptive control (MRAC) shown in Figure 7 these weights are

determined by minimizing the error between the network predicted output and the model

reference output. [Ref. 5:pp. 199-202] For the estimator, the predicted output is also some

weighted sum of the terms in a regression vector. In this case, the weights are altered to

minimize the error between measured and predicted output. Considering these factors as

inputs, weights, and outputs it appears that a Backpropagation neural network would provide

an intuitive structure for the solution of adaptive control problems.

Releranct

Inpu! ^•'^ 8yat«m
dynamics

^.
r X

i i

4
Adjuttabl/'
faadbacy
aalnt /

Adaptation
machanlam

f
R«r«r«ne«
modal "^^ -^^"

'

Figure 7: Model Reference Adaptive Control Structure

23

IV. NEURAL NETWORK ADAPTIVE CONTROL STRUCTURES

In this chapter the concepts of Backpropagation and adaptive control developed thus

far will be combined to produce two structures for neural network adaptive control. As

earlier introduced, adaptive control can be divided into two separable tasks, estimation and

control law synthesis. The estimation process involves the mapping of inputs to outputs. The

ability of a Backpropagation neural network to accomplish this is evident. The application

of Backpropagation to control law synthesis is more complex. The idea of a generic control

law involving the weighted sum of state variables and a reference input was advanced in the

discussion of control theory. At the same time, the notion of Model Reference Adaptive

Control was presented to provide some target output. Linking these concepts, the control law

synthesis may be viewed as the mapping of state variables and reference inputs to a model

reference output through some predetermined model. In the paragraphs that follow, two

methods of separating the tasks of estimation and control in a Backpropagation neural

network structure are proposed. The first involves a spatial separation, the functions are

performed in parallel. The second utilizes temporal separation with the estimation and

control duties accomplished sequentially.

A. PARALLEL STRUCTURE

In the parallel approach to neural network adaptive control, the estimation and control

responsibilities are physically separated within the neural network. This is similar to the

principle of certainty equivalence [Ref. 7]. A network demonstrating this structure is

presented in Figure 8. The network on the left in the figure performs the estimation

function. The purpose of this network is to map measured inputs to measured outputs.

Though this network is composed of a single linear layer, multiple layers with varying

connections and activation functions could be used. As long as the composition of the input

and output layers remains constant, the internal structure can be varied in any manner.

24

Parallel Structure Meural Hetuork Adapt iue Controller

1 ant odel

A

Figure 8; Parallel Neural Network Adaptive Controller

Control law synthesis is provided by the network on the right in Figure 8. This

network contains two structures. The middle two layers are an exact duplicate of the

estimation network on the left, and represent a black box model of system operation. The

weights in this structure are fixed as far as the control process is concerned. They are

obtained through links to the estimation network. As the estimation process progresses, the

model in the control network is continually updated. The control process is represented by

the two external layers added to this model. The input layer is composed of the state

variables and reference input whose weighted sum makes up the control input. The

additional output layer provides the desired model reference output. This network maps the

state variables and reference input into a control input which is propagated through the

internal model. The resultant predicted output is compared to the reference output and the

error is backpropagated through the model. This error is then used to change the weights.

25

or gains, on the controller inputs. In essence, the estimation network generates a simulation

of the system while the control network used this simulation to generate control inputs. The

parallel nature allows the network designer a large amount of flexibility.

B. SEQUENTIAL STRUCTURE

The sequential neural network adaptive controller structure is a derivative of the

control network on the right in Figure 8. Since the structure for the estimator and the

controller exist in the control network, both functions can be performed by one network if

they were separated temporally [Ref. 8]. The basic concept for a linear network applied to

a third order SISO system is demonstrated in Figure 9 and Figure 10. Operation of this

network involves completion of the estimation function as a measurement is made followed

by generation of the next control input during the inter sample period. In the estimation

Sequential Structure Neural Network Adaptive Controller: Estimation Phase

rer< t)

y < t)

u(l-l) u(t-2) u(t-3) -y(t-l> -y<t-2> -y<t-3?

r < I > u< t -1 > u< I -2) -y < t) y<t-l > -y<t-2>

Figure 9: Sequential Neural Network Adaptive Controller: Estimation Phase

26

Sequential Structure Neural Network Adaptive Controller: Control Phase

rer< t + 1

)

y<t +1 >

u(l)

r (I >

u(t - 1)

••!;... z':--i I- -".-.- - - -

.

u< t -1)

u< t -2

)

u(t -2)

y (t)

-y (t)

-y < t- 1

?

y < t-1 >

-U(t -2>

y < t-2)

Figure 10: Sequential Neural Network Adaptive Controller: Control Phase

phase, the outer layers of the network in Figure 9 are inactive. At a given sample time, a

measurement of the output of the system, y(t), is made. It is assumed that the control inputs,

u(t), are known. Using three past measurements of the output and three past known control

inputs, an input vector for the network is assembled similar to the regression vectors

discussed in Chapter III

^(t-1) = [u(t-l) u(t-2) u(t-3) -y(t-l) -y(t-2) -y(t-3)] (4.1)

This is the vector which is applied to the lower middle layer of the network in Figure 9.

This input vector is propagated forward through the weights in the network. Since the

activation function of the element labelled y(t) is linear, the activation of the element is equal

27

to its input or

y(t) = W21 u(t-l) + W22 u(t-2) + W23 u(t-3) - W24 y(t-l) - W25 y(t-2) -^^ y(t-3) (4.2)

where w- is the weight connecting element j in layer i to the output element y(t) and y(t) is

the network prediction for y(t). These weights are identical to the system coefficients

contained in the parameter vector

e(t) = [bj b2 b3 aj a2 aj] (4.3)

The error between the measured value for y(t), used as a target for the network, and the

predicted value y(t) is backpropagated through the network using the learning rule

Awj = a Xj 5 (4.3)

where the Xj are the elements in the regression vector, or input layer, and S is the error in

the prediction. The learning rule is identical to the algorithm used in the general least

squares parameter estimation method. The linear neural network estimator shown in Figure 9

is a parallel distributed processing implementation of the least squares parameter estimation

algorithm with the parameters identical to the weights, the inputs identical to the regression

vector, and the output element(s) identical to the measured output(s).

In the control phase, the outer two layers in Figure 10 become active. The weights

determined in the estimation phase are frozen to provide the network with an internal model

of the system. The input vector is updated by the addition of the measured value y(t) and

some reference input r(t)

<^(t) = [r(t) u(t-l) u(t-2) -y(t) -y(t-l) -y(t-2)] (4.4)

This input is then combined in some weighted sum to create an input u(t) which is physically

applied to the system

u(t) = Xj wjj 0.(t) (4.5)

where the <f>{X) are the elements in <f){\.). With the exception of r(t), the other regressors in

equation (4.4) are fed forward to create a predicted regression vector as seen in the second

layer in Figure 10. This predicted input is propagated through the fixed model to determine

a predicted value for y(t+l) in the third layer. This value, y(t+l), is fed forward through a

fixed weight of one and compared to the model reference value for time t+1. The error

28

between the prediction, y(t+l), and the reference value is backpropagated through fixed

weights until it reaches the control input u(t), where it corrects the weights, or controller

gains, between the first layer and u(t). A new measurement of the output resulting from the

input of u(t) determined from equation (4.5) is then made and the estimation process is

repeated. The controller gains for this network are determined in some least squares sense

from the error between the network predicted output and the model reference output.

In this chapter, the concepts of estimation and control are represented in two natural

structures for the study of neural networks in adaptive control. Through the use of linear

activation functions it has been shown that a neural network adaptive controller is a parallel

distributed processing implementation of the general controller and linear parameter estimator

developed in Chapter III. Each structures has its own strengths and weaknesses. The parallel

structure offers more flexibility while the sequential structure uses less elements. In

following chapters, these structures will be applied to specific adaptive control problems.

29

V. EXPERIMENTAL SETUP

Before considering specific applications of these neural network adaptive control

structures, a number of experimental setup considerations must be discussed. First to be

described is the computing platform used in the investigations. Next the system to be

controlled and identified, the longitudinal motion of the A-4, will be introduced followed

by consideration of how this system is effected by a number of adaptive control design issues.

Important control design concepts include controllability and observability, stability and

tracking performance. Estimation design concepts include input-output selection and model

selection. Finally, a discussion of how to determine the validity of the model or controller

developed. An understanding of these concepts is necessary to provide a frame of reference

from which to evaluate the networks demonstrated in the next chapter.

A. HARDWARE-SOFTWARE PACKAGE

Research for this thesis was conducted on a Sun Microsystems, Inc. Sun 386i/250

workstation using the Neuralworks Professional II software package by Neuralware, Inc. No

true parallel distributed processors are commercially available, so it is necessary to simulate

neural network operation using software and high speed centralized processors. The

requirements for hardware include large memory capacity and high speed to adequately

emulate a parallel distributed processor. Software requirements include an open architecture,

provision for multiple network types, flexible input-output, ease of network modification,

user-friendliness, size, and speed. The combination of the Sun and Neuralworks have proven

to be the best system to meet these requirements.

The Sun 386i/250 is an 80386 32-bit processor workstation operating at 25 MHz to

produce performance in the range of five million instructions per second (MIPS). The system

used for this investigation was configured with 16 MB of memory, one 3i inch floppy drive,

a { inch tape drive, VGA adapter, and a 16 inch monitor. With the use of Neuralworks

software, the Sun is capable of generating networks with up to 20,000 elements and 1,500,000

30

connections operating at a rate of 45,000 connections per second. The flexibility of the Sun's

operating system proved to be as important as the speed and memory size. SunOS provides

a multitasking windowed graphical environment on top of the powerful UNIX operating

system. In addition through the use of DOS windows, SunOS allows multitasking using DOS

applications as well. This provided the capability to train multiple networks at the same time

data manipulation was being conducted using both UNIX and DOS programs. No practical

neural network research may be conducted without the memory capacity and speed of the

Sun/386i. For the same price as a similarly configured IBM-compatible 80386 machine, the

Sun offers more power and flexibility. [Ref. 9]

Hardware power and flexibility are useless without equally powerful and flexible

software. The Neuralworks Professional II neural network development system by

Neuralware, Inc. offers the required flexibility and power. The complexity of applications

offered in Neuralworks ranges from fully developed example networks, to instant generation

of standard network types, to user customization of networks at the elemental level. Nearly

two dozen standard network types are available. Input-output may come from keyboard

input, formatted ASCII files, various spreadsheet formats, or user defined modules written

in the C programming language. Network structures may be saved in ASCII for portability

between systems. The ability to perform network diagnostics and monitor internal network

dynamics is provided by the use of 'probes' and 'instruments'. These software constructs may

be used to graphically display or store for future use a number of important network

parameters during the training process. Neuralworks allows customization of the network

topology, neurodynaimcs, and network control strategy. Neuralworks Professional II is a very

powerful flexible neural network development system. [Ref. 10]

Neuralworks accomplishes this flexibility through the interaction of a number of basic

modules. The main executable program contains code for the generation and operation of

a network, including processing element definition, learning rules, activation functions, and

a number of utilities. The architecture of a network, once created, may be saved and later

retrieved using a network data file. The example networks which come with the package are

31

contained in network data files. Input-output may be provided to the network in different

ways. The main executable module contains a utility for inputing data from a number of

different spreadsheet types. Complementing this is the ability to write an executable module

called USERIO in the C programming language to generate data. Neuralworks provides a

built-in USERIO program to input data from formatted ASCII files. To control the

sequencing of input-output, propagation, and learning, Neuralworks employs user definable

control strategies. Default strategies are provided for all of the standard network types.

Other modules which interface with the main executable include data files for gain schedules,

style sheets, and output data. Prototypes for the control strategies and USERIO programs

used for this investigation are included in Appendix A. [Ref. 3]

Another software package used heavily in this research is the Pro-MATLAB interactive

scientific and engineering program by the Mathworks, Inc. This program was used for all

of the data generation, processing, and display used for this thesis. Written in C, MATLAB

provides easy access to software developed by LINPACK and EISPACK, as well as graphics,

programmable macros, IEEE arithmetic and numerous signal processing and control

subroutines. Without MATLAB, the data processing requirements for this investigation

would have become extremely tedious. [Ref. 1 1]

The Sun 386i/250 and Neuralworks Professional II combination provide an outstanding

testbed for the study of any neural networks applications. The combination of speed,

flexibility, power, and a user friendly environment make this combination just about the best

for the study of neural networks. Also worthy of note is the contribution provided by

MATLAB by Mathworks, Inc.

B. LONGITUDINAL MOTION OF THE A-4 AIRCRAFT

The system selected for use in this investigation is a simulation of the longitudinal

motion of the A-4 aircraft. The complexity of aircraft motion is discussed at length in

[Ref. 12] and [Ref. 13]. The system and some of its important characteristics, as well as the

manner in which it was simulated will be briefly described below. Through the use of a

32

number of assumptions, the most significant of which is the assumption of small

perturbations [Ref. 12:pp. 84-127], the complex motion of an aircraft may be reduced to

uncoupled sets of linear equation for lateral and longitudinal motion at specified flight

conditions. The longitudinal equations of motion may be expressed in state space form as

x(t) = Ax(t) + Bu(t) (5.1)

Y(t) = Cx(t) + D u(t)

where the state variable is defined by

x(t) =
u(t) -- airspeed perturbation

a(t) -- angle of attack perturbation

q(t) -- pitch rate perturbation

^(t) -- pitch angle perturbation

(5.2)

the input variable is defined as

u(t) = 5(t) -- elevator deflection (5.3)

and the output variables are scaled versions of the state variables. The A and B matrices are

constructed for a given flight condition (altitude and mach number) from the aircraft's non-

dimensional stability derivatives, mass, moments of inertia, altitude and airspeed. The C

matrix is a diagonal scaling matrix, and the D matrix is the zero matrix. Descriptions of this

process are contained in [Ref.l2:pp. 167-196] and [Ref. 13:pp. 112-144].

This system was selected for this application because it exhibits a number of interesting

characteristics. It is a higher order, multiple output system. The natural time constants of

the system are of different orders of magnitude. The response of the variables u(t) and ^(t)

is dominated by low frequency dynamics, while the response of a(t) and q(t) is predominately

high frequency. The frequency response for the aircraft at sea level and mach 0.4 is shown

in Figure 1 1. The low frequency, or phugoid, modes have a natural frequency on the order

of 0.015 hertz for a time constant of approximately 66 seconds. The high frequency, or

short period, modes have a natural frequency on the order of 0.5 hertz for a time constant

of 2 seconds. By using several linear models for different flight conditions in the simulation,

33

A- 4 Long 1 t uO 1 na 1 Motion Frequency Response
10 =

10'

10'

^-"-^^ \- -

..-' \ "..

,-'' / ^'^. ^X"--*
,„-------—---^^^^

-
/

X
'"•-. '"'v"^""^^-

10°
-

/

'^~~^_

c
a-
o
2

10-'

10-'

10-'

-

,*'"

"\;
N.

IQ-'
uCO
a ipnac tD _ _

qctj . .

1 1 1 1 1 1 1 1 11 1 1 1 1 1 1 1 1

10-'
10-' 10-' lO"' 10° 10'

sea Level Fr equency C ^^er t z ;) Macn 4

Figure 11: A-4 Frequency Response

a crude form of non-linearity may be introduced. The five different linear models depicted

in Table I were used for this investigation. The manner in which these system characteristics

effect the adaptive control process will be addressed after the simulation process is described.

Table I: Flight Conditions Selected for Study

Flight Condition Altitude Mach Number

Condition 1

Condition 2

Condition 3

Condition 4

Condition 5

Sea Level

15,000 ft

35,000 ft

35,000 ft

Sea Level

Mach 0.4

Mach 0.5

Mach 0.6

Mach 0.8

Mach 0.8

34

The simulation was carried out through the use of a recursive algorithm in the USERIO

program. Continuous state space models (5. 1) for each of the five conditions were developed

using data from [Ref. 13:Appendix II] and converted to difference equations (3.3) for each

state. A sample of the MATLAB script file used to generate this data is included in

Appendix B. The values used for the continuous state space models and discrete transfer

functions are given in Appendix C. Further description of the computations performed

may be found in the Pro-MATLAB reference manual [Ref. 11]. The process involved first

scaling the states using the C matrix then developing a balanced realization to ensure better

conditioned matrices. These matrices were then converted from a continuous state space to

a discrete state space model using a matrix polynomial algorithm. This discrete state space

model was then converted to a discrete matrix polynomial transfer function using

H(z) = C (zl - A)-^ B = Y(z)/U(z) (5.4)

The z-transform may be replace with the q'^ operator and the resulting function may be

divided into numerator and denominator terms to obtain the DARMA model equation

A(q) Y(t) = B(q) u(t) (5.5)

or by a simple rearrangement

y(t) = B(q) u(t) - (A(q) - l)Y(t) (5.6)

or, upon expansion of the matrix polynomials

buiQ'^ + Ki^'^ + b^3q-^ + b^^q-^

X(t) =

bq^q-i + bq^q"- + bq3q-3 + bq^q-'

b^iq"^ + b^2q'" + b^3q-^ + b^4q"'

u(t) -
[ajq"^ + a2q'" + a3q'^ + a4q^] Y(t) (5.7)

The delay operator terms in this system of equations are then expanded and the equations

are rearranged to obtain four separate recursive equations of the form

y/t) = I, [bj, u(t-i)] - E, [ai y/t-i)] (5.7)

where the yj terms indicate the outputs u(t), a(t), q(t), and 0(t) and the four 3; terms are

duplicated for each of the four equations. The 20 parameters from equation (5.6) along with

35

equation (5.7) combine to make the algorithm used in the USERIO program to recursively

simulate the longitudinal motion of the A-4 aircraft. The frequency response of this discrete

simulation for the condition at Mach 0.4 and Sea Level with a sampling time of 0.1 seconds

is given in Figure 12. The coefficients for the B(q) and (A(q) - 1) matrices for this condition

A-A Long.tuOinai uoiion Discrete Simulation Frequency Oesponse
10' 1 1 1 I I 1 1 r 1 . 1 1 1 I 1 1 r r 1 i i i i i i i i i t r i i i 1 1 1

^•^ \ '•.

10°
*

10"'

o
10-' ^^^^\

''• ^^
3 \ '* ^
C \
t> \
o
a

10-' \
10-- -

aiphoctj . . \

-

10-' qCtD - - \v

1 1 1

10''
10'' 10'' 10"' 10°

sea Leve' frequency i^eriz^ Macn 4

10'

Figure 12: Frequency Response for Discrete A-4 Longitudinal Motion Simulation

and sampling rate are given in Table II where the position of the coefficients match those in

equations (5.6) and (5.7). These coefficients are relatively numerically ill-conditioned. With

the six decimal place precision of the Neuralworks Professional II software it will be difficult

to characterize the u(t) terms in B(q) (the first row in Table II) which are on the order of 10"

^. The same is true to a lesser extent for the other terms in B(q). At the same time, there

is a large difference in relative magnitude between the (A(q) - 1) terms and the B(q) terms

for each output. The ill-conditioned nature of this problem can make it difficult to

determine a good model for the system.

36

Table II: Parameters for Flight Condition Sea Level/Mach 0.4 with a Sampling Time
of 0.1 Seconds

B(q) = 2.7131e-05 7.7248e-05 -7.0558e-05 -2.2579e-05
-3.4619e-02 4.5022e-02 1.3715e-02 -2.4124e-02

-1.9864e-01 5.8002e-01 -5.6414e-01 1.8276e-01

-7.7052e-03 7.4781e-03 6.9640e-03 -6.7386e-03

(A(q)-1)= -3.6949e+00 5.1802e+00 -3.2755e+00 7.9021e-01

C. EXPERIMENTAL DESIGN CONSIDERATIONS

A number of design issues must be carefully considered in the implementation of a

neural network adaptive controller. These concerns are driven by the complex

interrelationships between the system, the controller, and the estimator. The experimental

setup is controlled in large part by these matters. Failure to address these topics may result

in a failure of the neural network controller. The manner in which system, control, and

estimation concerns effect the design of the neural network adaptive controller are discussed

below.

1. Control Design Issues

A number of different factors must be considered in the design of a adaptive

controller. In order for the estimator to function, the system must be observable. In order

for the controller to work, the system must be controllable. Systems, such as the longitudinal

motion of the A-4, which can be expressed as transfer functions are both controllable and

observable. For this controllable, observable system, some control objective must be

formulated. The neural network adaptive controller was conceived as a type of model

reference adaptive controller. The USERIO module generates a model reference output using

the parameters for the flight condition at 15,000 feet and mach 0.5 in parallel with the

simulation. This condition was chosen because it is relatively close to the center of the flight

envelope determined by the other four flight conditions. The control objective is to track

this reference output. [Ref. 5:p. 152]

37

Stability is also an important issue. The poles and zeros of A(q) and B(q) for the

simulation at Condition 1 (Table II) are given in Table III. Note that u(t) has a zero outside

the unit circle, q(t) has a zero on the unit circle, and a(t) and ^(t) have poles very near the

unit circle. These zeros are or potentially may become non-minimum phase. This will cause

the inverse of the transfer function to be unstable, requiring infinite or non-causal control

for exact tracking. At the same time, an offshoot of the concept of controllability is that an

independent input is required to exactly control an independent output. For this system,

there is a single input with four outputs. The solution to these two problems is to use some

non-exact form of tracking. In the neural network adaptive controller, the non-exact

tracking is handled in two ways. First, the control input activation function can be limited

to a certain value. This simulates control saturation. Second, the control gains are

determined in some least squares sense using the Backpropagation learning rule similar to the

Table III: Poles and Zeros of the Discrete Simulation for Condition 1 with a Sampling
Time of 0.1 Seconds

poles = 0.8482 + 0.268 li

0.8482 - 0.268 1 i

0.9993 + 0.0096i

0.9993 - 0.00961

zeros^.,^ = -3.5191

0.9270

-0.2551

zeros .,^ = 0.9992 + 0.01 OOi

0.9992 - O.OlOOi

-0.6979

zeros .,x = 1.0000

0.9986

0.9213

zeros^,,^ = 0.9986

0.9219

-0.9500

method used by conventional optimal control. The purpose of optimal control is to achieve

the best possible non-exact tracking given certain constraints in a least squares sense.

Through the use of a type of optimal control and control saturation, the neural network

adaptive controller should be unaffected by the presence of unstable inverses in the system.

[Ref. 5:pp. 157-163]

2. Estimation Design Issues

Although based on the same principles, the estimation design considerations for

this investigation are more complex than those for control. The goal of an estimator is to

develop a model of a system for a specified purpose. For use in the neural network adaptive

controller, the function of the estimator is to model the input-output relationships of the

system. To accomplish this objective, determination of appropriate input-output

characteristics and model structure must be made. These design decisions must be tempered

by consideration for the model application--a neural network adaptive controller.

a. Inpul-Output Selection

In estimation experiments, the selection of what to measure is a complex issue.

In this case the state and input variables are the measured outputs and input, however the

scaling of these measurements is an important factor which will be described in the

discussion of model structure. Once the variables to be used are selected, the proper input

characteristics for the experiment must be determined. Three factors which must be

considered in input selection are data record length, the input spectrum, and the sampling

time. [Ref. 6:p. 340]

The choice of input spectrum is one of the most important in estimation.

Intuitively, the input spectrum must be selected such that all modes of the system are excited.

This is known as the concept of persistent excitation. A related concept, parameter

sensitivity is the sensitivity of the parameters to excitation at different frequencies. This is

a function of not only the system to be modelled but the model structure chosen as well.

There are disadvantages to overexcitation, however. The input spectrum must not be selected

in such a manner that the output signal strength is exceeded by any expected non-modelled

39

noise. This signal to noise ratio concept is related to the idea of the information content of

an input. [Ref. 6:pp. 358-378]

The effects of these factors in input spectrum selection may be seen graphically

in Figure 12. Persistency of excitation indicates that at a minimum input energy must be

placed near the low frequency, or phugoid modes, and the high frequency, or short period

modes. Due to sensitivity of parameters, energy must also be expended in the range of

frequencies where high frequency attenuation occurs. The justification for this may be best

understood by recalling that the best indicator of a system's order is its high frequency roll-

off. The concept of a truly deterministic system is impossible to obtain in real terms. In

this, as in all, investigation of deterministic systems there is actually some noise present. This

noise is due primarily to simulation errors and truncation in the Neuralworks Professional II

program (Neuralworks only allows access to values with precision out to six decimal places.)

Both of these noise factors are predominantly in the high frequencies where it was just

indicated that there must be some excitation. The presence of modelling errors, known as

aliasing, may be seen by comparing the high frequency (three to five hertz) regions in

Figure 12, the system discrete simulation frequency response, with Figure 11, the true

system frequency response. Note that there are some high frequency dynamics present in the

discrete frequency response which are not present in the continuous, or true, frequency

response. The concept of information content thus is in conflict with the concept of

persistent excitation. The problem of input spectrum is to select the input which is the best

compromise between the requirements of persistent excitation and information content. The

complex issues in input selection are studied in this investigation through the use of a number

of different user selectable inputs in the USERIO program. [Ref. 6:pp. 358-378]

Another factor in input-output selection is determination of the sampling time.

Sampling a system contaminates its dynamics. Information about frequencies above the

Nyquist frequency (one half of the sampling rate) is totally lost. At the same time, energy

in frequencies above the Nyquist frequency is folded over onto lower frequencies. This

superposition is the aliasing described in the previous paragraph. The desire is to minimize

40

the effects of aliasing. This can be done accomplished by filtering out the aliasing and

including the filter structure in the estimator. Since the structure of the filter would be

known it could easily be included in the neural network structure proposed in this thesis

This method adds undesired complexity to the problem and was not investigated. An

alternative solution is to sample fast enough to eliminate the effects of aliasing. This,

however, has its own disadvantages. [Ref. 6:pp. 378-386]

Sampling too fast may cause loss of information on low frequency dynamics while

sampling too slow may cause loss of information on high frequency dynamics. The problems

with sampling rates result from poor numerical conditioning, aliasing, and the distribution

of energy in the input spectrum. Figure 13 shows the pole-zero plots which result from

sampling the system of A-4 longitudinal motion at two different sampling rates. With a

0.4

0.2

-0.2 -

-0.4

0.5

-0.5

Pole Zero Plots for A-4 Longitudinal Motion Simulation

-o-<[

-4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0,5 1

o - Zeros M 0.4/Sea Level Ts=0.1 Seconds x - Poles

-I r-

o o o -i

-0.6 -0.4 -0.2 0.2 0.4 0.6 0.8 1 1.2

o - Zeros M 0.4/Sea Level Ts=5.0 Seconds x - Poles

figure 13: The Effect of Sampling Rate on Poles and Zeros

sampling time of 0.1 seconds, the low frequency poles and zeros congregate around the point

z = 1.0, the ideal integrator. With a sampling time of 5.0 seconds, the high frequency poles

41

cluster around the point z=0.0, a direct input. Sampling too fast may cause ill-conditioning

in the low frequencies while sampling too slow may cause ill-conditioning in the high

frequencies. Another problem with sampling too slow results from the aliasing discussed in

the previous paragraph, while another problem which is a consequence of sampling too fast

is the energy distribution problem demonstrated in Figure 14 where the input sequence and

spectrum for a random binary (RB) input are shown. By using a log log plot, it is easy to see

that each succeeding decade of the input spectrum contains ten times more data points

implying ten times the excitation and thus ten times the spectral energy. The higher

frequency modes therefore receive more excitation. The consequences of fast and slow

sampling rates indicate that estimators will only be effective over a limited range of

frequencies. An estimator can successfully cover on the order of two to three decades of

^sample R^naom Binary input ^sequence

1C 1?

10"

10'

10'

10'

-1 1 r-

T I me CSeconas) Ts = i Seconos

Sample PanoocTi Binary Seouenc e Spec t r a i Content

_j 1 I I t M
10'* 10-^ 10°

Fr eq uenc y C "^'' ^ ' D

Figure 14: Effect of Sampling Rate on Excitation

42

frequencies. A rule of thumb for the selection of sampling time is approximately one-tenth

of the highest natural time constant. For this investigation, a sampling times of 0.1 seconds

was used. The low frequency and high frequency dynamics of the A-4 longitudinal motion

span a range of about two and one half decades and thus may exceed the limitations of the

estimation process. [Ref. 6:pp. 378-386]

The choice of data record length is also important. Although the simulation used

in the USERIO program could generate data indefinitely, modeling errors result from the

recursive nature of the simulation and the presence of non-minimum phase zeros. Errors in

the simulation propagate at a rate proportional to the power of the absolute value of the

system zeros. Since many of the zeros are near to or outside of the unit circle (see Table III)

errors in the simulation will grow unbounded. The simulation must thus be reset at some

time to keep these errors from becoming significant. At the same time, resetting the

simulation adds noise to the data by truncating the sequence. There is also a need to consider

the number of periods of the phugoid modes presented to the estimator. The chosen

compromise was to use a data record length of 9000 points which would give between 125

to 150 presentations of the phugoid using a sampling time of 0.1 seconds. This is

implemented in the USERIO program by resetting the simulation every 9000 cycles. [Ref. 6:p.

382]

Input-output selection is a complex task. Consideration of persistency of

excitation, sensitivity of parameters, and information content is essential in selecting the

input spectrum. The range of significant frequencies in the system is important in choosing

a sampling rate. Finally, the length of the data record must be commensurate with the size

of the model and character of the system being modelled. The USERIO program used for

this investigation incorporates a number of input selections to test the effects of some of

these choices, while minor modifications to the program may be used to test others.

43

b. Model Selection

Model selection is also critical to the success of the estimation process. This

should not be viewed as the selection of a single model, but instead the selection of a class

of models. The estimation process is the determination of which member of this class best

fits the data provided. In this way, the model selection represents some artificial constraint

in which the system is to be represented. The major factors in model selection include model

structure, parameterization, and the estimation algorithm. The model structure represents

the architecture of the model while the parameterization determines the dependencies of its

elements and the estimation algorithm determines the manner in which the dependencies are

changed. Model selection issues are important to consider in the design of a neural network

adaptive controller.

Selecting the model structure involves choosing a prototype for the system. This

may include determining whether the model is to be linear or non-linear, the order of the

system, the number of elements in the input and output vectors, even the number of models

used to represent the system. For the adaptive controller, the model structure also includes

the number of elements used for the control law. For this investigation, the model structure

was similar to the sequential structure developed in Chapter IV. Figure 15 gives an example

of the structure used parameterized as four different transfer functions. Since the

longitudinal motion of the A-4 is a fourth order system with four outputs, the required

number of regressors is 20, four for each output and four for the single input. The 19

elements in the bottom layer represent past measurements of the outputs and inputs. From

left to right, the first three input elements are (5(t-2), 5(t-3), and 5(t-4) where the element

label indicates the delay for that particular unit. The next four elements represent delayed

values, or past measurements, of u(t), followed by four for Q(t), four for q(t), and finally

four for 0(t). This layer is duplicated in the second layer with the addition of r(t-l), the

reference input, to provide the state variable plus reference input for the control law

synthesis. The third layer is a single element, a weighted sum of the reference input and

states, the control input, 5(t-l). The 20 elements in the regression vector come from the 19

44

Neural Metuork Adapt iue Control Structure/Longitudinal Motion of the A-4

UREF<t >

UC t)

ftREFCt >

flLPHfl (t)

QREFCt >

QCt)

TREFCt >

THETfi(t

?

^'^si^^^^. ^^''V^?^V.,fn(^ ^^^^^^^^/f^^f <^^^e?^

lieuralUorks Professional II (tn) serial number MZFB50-2OZO5
Copyright (c) 1987, 1988 by HeuralUare, Inc. ftll Rights Reserued.

Figure 15: Neural Network Adaptive Controller Structure for A-4 Longitudinal Motion

units in the first layer and the single unit in the third layer, which is itself a weighted sum

of the activations of the elements in the second layer. This is a slightly different, though

equivalent, structure for the middle layers than the one developed in Chapter IV. The second

layer from the top is the output layer. The top layer is the reference layer. The effects of

non-linear models are incorporated by introducing hidden layers with non-linear activation

functions between the third layer, the control input layer, and the fourth layer, the output

layer, in Figure 15. Additional elements may also be added to the input vector to allow for

models of higher order or different inputs as in Figure 16. Note the addition of mach

number and altitude in the last eight elements in the bottom layer. This neural network

adaptive control structure allows a natural progression from linear to nonlinear models.

Determining the manner in which these elements of the model structure are connected is

known as parameterization. [Ref. 6:pp. 408-431]

45

Hon-linear MM Adaptioe Control Structure for Multiple Conditions

URE F fiREF QREF TREF

*i:Li^^^;igig^'fefe

i
31 ^1 91 91 711 91 S:

MeuralUorks Professional II (tni) serial number MZFB50-Z0205
Copyright (c) 1987, 1988 by MeuralUare, Inc. ft 11 Rights Reserued

Figure 16: Non-linear Neural Network Adaptive Controller Structure for A-4
Longitudinal Motion/Multiple Conditions

Parameterization concerns selecting the dependencies between various elements

in the estimator. From equation (5.7), it is known that it requires a minimum of 20

parameters to fully describe the system. From Figure 15 it can be seen that there are 80

possible connections in the linear structure which can be made in any number of

combinations. The neural network adaptive control structure in Figure 15 is parameterized

as four separate linear transfer functions. This requires 32 connections. Each output element

has eight connections. Four of these connect the 5(t) terms to the output element and

represent the bj parameters from equations (5.6) and (5.7). The other four connections attach

the output to its own past values and represent the aj parameters in (A(q) - 1) from equations

(5.6) and (5.7). More elements may be added to the regressor to change the order of the

model. The selection from all possible parameterizations is a complex task which will be

discussed in the results. [Ref. 6:pp. 408-431]

46

The complexity of the gain used in the estimation algorithm has a great effect

on convergence and stability of the estimator. The gain term in the general form of the least

squares estimator

e(t+l) = 0(t) + M(t) ^(t)e(t) (5.8)

may take many forms, one of the most complex of which comes from the RLS estimation

method developed in Chapter III. The gain used in the Backpropagation neural network is

much simpler. It is related to an estimation algorithm known as the least mean square (LMS)

estimation method, whose gain law is

a
M = (5.9)H II

where a is some constant and
||
$

||
is some norm of the entire set of regression vectors. The

stability limits for a result from the fact that the linear estimation process is itself a first

order dynamic system. The value of a in this system represents the eigenvalue of the system

whose stability limits are [Ref. 14]

0<a<l Stable, overdamped (5.10)

1 < Q <2 Stable, underdamped
2 < a Unstable

Knowledge of these limits on a gives an exact means to determine the value for the learning

rate in a linear Backpropagation neural network and a general guideline for determination

of the value for the learning rate in a nonlinear Backpropagation neural network. An analysis

of the features provided by the gain term in the RLS method will point out some other ways

in which the Backpropagation estimation gain may be improved. The RLS gain term is

expressed as

P(t) (5.11)

L(t) =

+ cf>\t) P(t) ^(t)

Of no small significance is the fact that the gain is a function of time. In both the numerator

and denominator, the term P(t) is the error covariance of G(t). It provides an error

distribution function. In the denominator, the (l>^it) P(t) (j){t) term provides some scaling

47

function. Error assignment in distributed systems is a complex task beyond the scope of this

investigation. The gain can, however, be made more robust by making it a function of time

and prescaling the data. A crude form of adaptive gain law is provided through the use of

gain schedules, known in the Neuralworks Professional II software as learning rate schedules.

The use of learning rate schedules is at best a trial and error effort. They were not used in

this investigation. The data may also be scaled to make the estimator equally sensitive to

outputs of different orders of magnitude. The A-4 longitudinal modes were scaled using the

C matrix as mentioned above to obtain inputs and outputs bounded by the value one. This

was done empirically by simulating the system response to various inputs and scaling by the

maximum deflections, at best an inexact method. The concept of scaling is also important

for nonlinear activation functions whose values are bounded by set regions. Using this type

of scaling, the gain for an element using the stability limits for the LMS method can be

simply expressed as

M = 1/N (5.12)

where N is the number of input connections to that particular element. The neural network

is very sensitive to this gain. A value for the gain which is too high will cause the estimation

network to go unstable. A value which is too low will require very long convergence times.

The estimator gain used in the Backpropagation neural network leaves much to be desired.

3. Validation Issues

Once a model is established or a control law is developed, some means must be

used to validate the result. In this investigation, the true system is fully specified, so it is

easy to compare the estimated models to the true model. The neural network estimator or

controller performance can be evaluated dynamically by examining the errors between the

network output and the desired output as training progresses. Statically, the performance

may be evaluated in the time domain by looking at the error produced using inputs other

than the one on which the network was trained. Frequency domain characteristics for black

box models may be evaluated using spectral estimation techniques. For linear systems, where

48

the parameters have some physical significance, the parameters may be used for evaluation.

The coefficients of true and estimated models may be compared directly, frequency response

plots may be generated, and the poles and zeros may be evaluated. Many of these methods

will be used to evaluate the neural network adaptive controllers presented in the next chapter.

D. SUMMARY OF EXPERIMENTAL SETUP

In this chapter, the experimental setup for this investigation has been characterized.

The hardware and software to be used were described. The system to be modelled and

controlled has been introduced. Finally, some considerations in the design of the experiment

were developed. With due consideration of all of the items discussed in this and the previous

chapters, it is now possible to conduct experiments in the use of neural networks in adaptive

control.

49

VI. RESULTS AND DISCUSSION

The concepts developed in the previous chapters will be combined in this chapter to

demonstrate the effectiveness of the application of neural networks in adaptive control.

Initially, the stability characteristics of a linear neural network adaptive control structure will

be investigated. The estimation qualities of linear and nonlinear neural network adaptive

control structures will then be examined. Finally, a few examples of the operation of a

neural network adaptive controller will be demonstrated. Through the use of linear and

nonlinear networks, the similarities between neural networks and current adaptive control

techniques will be shown as well as some possible extensions of adaptive control provided by

neural networks.

A. NEURAL NETWORK STABILITY CHARACTERISTICS

The neural network adaptive control structure parameterized as four different transfer

functions as shown in Figure 15 was used to demonstrate network static and dynamic

stability. This parameterization was chosen because the weights in the network can be

directly compared to the coefficients used in the simulation. The stability demonstration was

conducted by testing a network whose weights were artificially set to be exactly those of the

true system. In this case, the true system was represented by the flight condition of mach

number 0.4 and an altitude of Sea Level (Condition 1 from Table I). First, the network was

trained for one data set, or 9000 cycles (900 seconds), using the random binary signal. Plots

of the percent deviation of each of the weights, or coefficients, from the true coefficients

for each output as a function of training time is shown in Figure 17 through Figure 20. Each

graph contains eight plots, one for each of the a^ and bj coefficients associated with each

output. The maximum deviation of the parameters associated with u(t) is on the order of two

percent (Figure 17) with one perturbation between 700 and 800 seconds, while the maximum

deviation for parameters associated with a(t) is on the order of 0.001 percent (Figure 18) with

perturbations around 400 seconds, 800 seconds, and 900 seconds. The maximum deviation

50

for parameters associated with q(t) is on the order of 6 x 10'^ percent with no perturbations

(Figure 19), while the maximum deviation of the parameters associated with e(t) is on the

order of 6 x 10"^ (Figure 17), also with no perturbations. At this point the discussion of the

relative size of the parameters in Chapter 5, Section B. becomes apparent. Each of these

percentages represents real deviations on the order of 10'^ the precision of the Neuralworks

Professional II program. Since the bj parameters associated with u(t) are so small, they are

very sensitive to changes in the seventh decimal place, followed in sensitivity by e(t), a(t),

and finally q(t). Note that the weights and the corresponding parameters remain very stable,

with few perturbations of small magnitude.

Next, the weights were each perturbed by some random amount between -0.01 and 0.01

and the network was trained for 18,000 cycles (1800 seconds). This was done to determine

if the parameters would return to the original values. The percent deviation of each of the

parameters as a function of training time for each output are given in Figure 21 through

Figure 24. Again, the sensitivity of the parameters associated with u(t) is seen in the 500

percent deviation caused by a perturbation on the order of 0.01 in Figure 21. The parameters

for u(t) appear to settle to a point near zero percent deviation. Note the underdamped

convergence of the parameters for u(t). For a(t) (Figure 22), the parameters converge to

some value within the first 200 seconds, though one parameter exhibits a deviation of

approximately one percent. The same convergence rate is seen in Figure 23 for the

parameters associated with q(t) with much smaller percentage deviations. The parameters for

G(t) exhibit the same underdamped convergence seen in u(t) with percentage deviations of

the same order as the parameters associated with q(t). All of the parameters show a strong

tendency to return to the proper value. Deviations are again related to the relative size of

the parameters for each output. The slow convergence seen in the parameters for u(t) and

0(t) is most certainly related to the fact that u(t) and 6(t) are slowly changing, or low

frequency, modes. These two simple trials indicate that a network containing weights related

to the true system will be relatively stable in the presence of small plant disturbances. At the

same time, problems related to the conditioning of a model parameterized as four separate

transfer functions becomes apparent.

51

stab 1 nty of Parameters for "CO
2

1 5 - -

1

c
O

>
ft

o 5
- -

c

u

«
a

- D 5

100 zoo 300

T ime -

•<00 500

Seconds C^s = 1

600

sec)

700 800 900

Figure 17: Network Static Stability for u(t)

Staoi I ity of Par 3ffn- 1 e-- s for aipnoCt,}

10Q 200 300 ^OO 500 600 700 BOO

T . mfe - Seconas QTs - 1 69C}

Figure 18: Network Static Stability for a(t]

52

X 10-' StOD i M ty or Para<neiers for qCt3

5
- -

4 - -

c

c 3
- -

>

«

2
- -

1
- -

- -

- -1
i 1 . J < ., .±.... . .

100 ?oo 300

r , me -

•too

Seconas

500

CTS = 1

600

sec :i

TOO 800 900

Figure 19: Network Static Stability for q(t)

X 1Q- = St OD 1 1 ity of Parameters for tnetac tj

5
-

4 -

3
-

c
o

>
2

-

•M

i-

1

- - ~

- 1

-2 - -

-3 1 , , , , , ,

100 200 300

T .me

400 500

- Seconds C Ts =

500

1 sec3

)00 800 9O0

Figure 20: Network Static Stability for 0(t)

53

PerturDeo S 1 1> i I iiy of Poraneters for uCt)

600 BOO 1000 1200 1400 160C 1600

Time Seconos ^Ts = 1 sec;)

Figure 21: Network Dynamic Stability for u(t)

PerturDeo Staoiiiiy of Paremeters for oipnact)

?00 400 600 800 1000 1200 1400 16QD 1800

Time - Seconos (_Js - o 1 sec)

Figure 22: Networtc Dynamic Stability for Q(t)

54

a 5

Pert uroed Stob i 1 i ty o f Parameters for qCt)

.

'

3
k

c
o

"\

w

>

a 2
-

c
V
u

t>

a

0.1

/

t
fe=z ^^^

-0.1 ' 1 I 1 1 —1
1

200 400 600

T 1 me

800

- Seconos

1000 1200

CTs = 1 sec3

1400 1600 1B00

Figure 23: Network Dynamic Stability for q(t)

PerturDea Statiiiity of Porameters for thetoCt)

200 400 500 600 TOOO 1200 1400 1600 1800

Time - seconas c^s = i sec;;)

Figure 24: Network Dynamic Stability for 0(t)

55

B. THE NEURAL NETWORK ADAPTIVE CONTROLLER IN ESTIMATION

The performance of the neural network adaptive control structure in estimation of the

longitudinal motion of the A-4 will be examined in the following paragraphs. Developing

a good model of the system to be controlled is important in developing a good control law.

The estimation trials were accomplished using the neural network adaptive control structure

and skipping the control law synthesis phase of operation for each sample. The performance

of two linear networks with different inputs and parameterizations will first be demonstrated

in developing a model for the linear system represented by Flight Condition 1 (see Table I.)

A nonlinear network will be used to establish a model for the same linear system. The

concept of a nonlinear neural network will then be extended to the modelling of multiple

flight conditions. The similarities between the performance of linear networks and linear

least squares estimators will be shown and extensions provided by nonlinear networks will

be demonstrated.

1. Linear Neural Network Parameterized as Four Transfer Functions

Initial estimation efforts involved the use of linear neural networks establishing

a model for the condition M 0.4/Sea Level. The first network to be evaluated was trained

using the random binary (RB) input and was parameterized as four transfer functions as

shown in Figure 15 and discussed in the previous section of this chapter and Chapter V,

Section C. This parameterization based on a priori knowledge gives the network 32

parameters to describe the system. It was hoped that the weights of the trained network

model would exactly duplicate the parameters used in the simulation. The neural network

was trained for 5,000 (500 seconds), 50,000 (5,000 seconds), 500,000 (50,000 seconds), and

5,000,000 (500,000 seconds) cycles. In spite of the lengthy training times, the network never

seemed to learn the proper coefficients. The weights for u(t) and a(t), which are

representative of the phugoid and short period modes, are compared with the true system

parameters in Table IV. The b| and aj terms are defined exactly as in equation (5.7). The

network determined bj terms for both u(t) and a(t) appear to be near the correct magnitude

56

i

although the signs are incorrect in many cases. No discernible similarities may be seen

between the network determined and true values for the a; terms. What is interesting to note

is that the neural network determined coefficients for aj and bj are much closer in relative

magnitude than those for the true system. The neural network appears to have developed a

better balanced or better numerically conditioned representation for the system.

Table IV: Network Weights at 5,000 and 5,000,000 Cycles

Terms

'ul

'm2

>u3

'u4

lu3

*u4

'al

'a4

^a2

Ja3

Ja4

5k Model

-1.2340e-03
-7.4700e-04
-3.4000e-04
-8.6500e-04

-7.5005e-02
-5.9103e-02
-4.3016e-02
-2.6879e-02

-3.4585e-02
-5.9416e-02
-4.2327e-02
-1.2359e-02

-6.7710e-01
-4.2595e-01

-6.1324e-02
4.0465e-01

5M Model

1.6200e-04

1.9200e-04

2.5200e-04
2.2600e-04

-1.0065e+00
-4.8096e-01

1.5285e-02

4.7618e-01

-3.4585e-02
-5.9223e-02
-4.2003e-02
-1.2231e-02

-6.8273e-01

-4.2207e-01

-5.6638e-02
4.0036e-01

True Model

2.7131e-05
7.7248e-05
-7.0558e-05
-2.2579e-05

-3.6949e+00
5.1802e+00

-3.2755e+00
7.9021e-01

-3.4619e-02
4.5022e-02
1.3715e-02

-2.4124e-02

-3.6949e+00
5.1802e+00
-3.2755e+00
7.9021e-01

The quality of this balanced representation may be better evaluated by conducting

time and frequency domain analyses of these models to determine how closely they come to

the true system. The swept square wave is a good input to test the time domain response of

a model. Figure 25 gives the time and frequency domain characteristics of the swept square

wave. The swept square wave is an input signal which excites all of the frequencies of

interest. At the same time, the time domain response is easy to visualize since each segment

is a unit step input. The plant response of the model trained for 5,000 cycles is shown in

Figure 26. The output u(t) exhibits the expected low frequency response, while a(t) and q(t)

exhibit high frequency responses, and 0(t) exhibits a mix of low and high frequency

57

responses. These are the expected shapes for the plant response. The RMS prediction error

is given in Figure 27. This shows how close the predicted output is to the true output. The

network appears to have developed a good model for a(t) and q(t), with RMS errors on the

order of 0.1 or ten percent of the maximum output value of one. The network has not,

however, learned u(t) and e(t) very well, with RMS errors on the order of 0.7 or almost 70

percent of the maximum output value of one.

Because this is a linear network, the internal structure, the weights, have physical

significance. These parameters can be used to evaluate the frequency domain characteristics

of the system by generating discrete Bode frequency response plots. The frequency response

plots for the longitudinal modes of the A-4 estimated using this parameterization of a linear

neural network estimator with a Random Binary Input are given in Figure 28 through

Figure 31. In Figure 28, the frequency response for u(t) may be seen. As the training

progressed, the network first developed a good high frequency model for u(t), then developed

the proper shape for the frequency response, but by 5,000,000 cycles had still not learned the

entire response correctly. The presence of unmodelled noise dynamics in the range of

frequencies between three and five Hertz is significant. The frequency response for a(t) in Figure 29

shows that the network develops a near exact model almost immediately. However this model

does not change much with further training and the network is unable to model the low

frequency dipole even after 5,000,000 cycles. The frequency response for q(t) in Figure 30

is similar to that for a(t). In Figure 31, the frequency response for e(t) is similar to that for

u(t). Almost immediately the high frequency response (above 0.5 Hertz) is accurately

modelled. At 5,000,000 cycles, this accurate modelling has only expanded down to about 0.1

Hertz. Again, there is some undesirable high frequency noise modelling present. As

expected from the discussion of input selection in Chapter V, the frequency response for all

outputs is good over a limited range of frequencies, even though the random binary input is

known to be persistently exciting. At the same time, some outputs show the modelling of

undesirable noise dynamics in the very high frequencies related to the concept of information

content. The low frequency dynamics have apparently been lost and replaced by some high

58

frequency noise dynamics. The neural network is more sensitive to high frequency noise

dynamics excited by the persistently exciting random binary input than to the low frequency

system dynamics. The concepts of persistency of excitation, information content, and the

effects of sampling time can all be seen in the frequency response results for this network

parameterization. The network (see Table IV) appears to be making the best balanced

realization it can with the available parameters. From these results it may be seen that neural

network estimators are governed by some of the same precepts that govern traditional

estimation.

Various other trials were conducted using a network parameterized as four

transfer functions with little improvement on the results. Inputs with excitation in different

frequencies, slightly overparameterized systems, and different sampling times were used to

attempt to obtain better results. The network parameterized in this manner could not learn

both the high and low frequency dynamics at the same time.

2

1 5

1

, 5

- Q . 5

- 1

_SamD
1

iwpDt snuHre wave inou seqijence

-

L_ _

— —

_

—

_

r
—

JuUuUUuUUiJUl

III 1

uUU illllll

1

~

200 250 300 350

Time CSfeconos) Ts=D 1 Seconds

lO"

-10'

-ID*

10'

-10'

10'

10°

10"'

Samo I e Sweot^ ^g upr e «a ve
^

i npm
^

Segy^nce Spectra I

^

Conl, ^n| —

1

1—I—I—I I I I

_i—1—I—I 1

ID-' 10"' 10"

Frequency C^^^'-t.z;)

Figure 25: Input Characteristics

59

ProaiCjl .on f or ur t 1

200 3O0

T I tne c Seconas)

PreoK^i ion for or t 1

200 300

Time C Seconos;)

<00 500

400 500

Prediction for ALPHATtl

5 Uiiliililll i
-

-

5 ji nil J 1 1 1 1 -

- 1
1 1 nil III 11^ -

Pren ict ion for -jHETAr 1 I
^

100 ?G0 300 400 500

T t me C Seconds^

100 200 300 400 SOO

Time CSeconasJ

Figure 26: Plant Response

PreO 1 Ct 1 1 Error for uro

0.6-

1

-

0.5- -

4 -

3

1

-

, 2
-

1

1

-

200 300 40C

T I me C Seconos

)

200 300

T . me. C Seconos

Pr ea cVLOn terror for or I

12 i
-

1
-

oe -

06
III

1

-

04 -

02 •

'

-

400 500

-eg I ;t I on Error fc^r ALPMArt

Preoict ion frror for THFTArtl

100 200 300

Time C Seconos >

•00 SOO

Figure 27: Prediction Error

60

System ono Network Moaei Frequency Response for uC I)

10'

10°
-

V„..-x
-

N. \
10"'

-

\^ •-,

N
\

-
"S^

"V. '"N^
10-'

10-'

/-"'

^ V /

I /

I /

\ 1

I I

-

10-'

5w eye 1 es

_ . SDOk c vc 1 es x^^
10-' _ _ 50k cycles

Tr ue 5ys t em

10''

M </ See Le

10''

Frequency C^eriz^

10°

Ts = o . 1 Seconas

Figure 28: Frequency Response for u(t) for Various Amounts of Training

System ano NeiworK Moae i frequency Response for Aipnect^
10'

\

-

10° : -—^ __^X
1 ^--^

- V/ \
- \

0-

D

c

c
2

10-" =

\
10-'

-

. , 5u eye 1 es

_ _ 500k eye t €S
_ _ 50ic eye lee

True System
\.

10"'
10-'

M 4/ 5eo Level Frequency (Hertz;)

10°

Ts=o 1 seconos

10'

Figure 29: Frequency Response for a(t) for Various Amounts of Training

System ana Networic Moaei Freouency Response for qct)
10'

- -

10°

C

3 A—

^
:

10"'

; 7 :

5u eye l4s

- - soot c^c 1 es

_ - 50k c/c les

True System

1 1 t 1

10-'

10 ' ^a' 10"' 10° 10

M .(/sea Level frequency c^ertzj Ts = i Seconos

Figure 30: Frequency Response for q(t) for Various Amounts of Training

10' F

10-' =

System ano Networc Moae i Frequency Response for ThetaCt^
-\ 1—I—I—I r r T T 1 1 1—I I I 1 "T 1

r
1 1—I T I 1 1 1 1 1 1—TT—

5M eye I es
SOOtc cycles
50ic eye I fts

True System

w -»/ seo Level

10
'

Frequency C "er t z ;j Ts=0 1 Seconos

Figure 31: Frequency Response for 0(t) for Various Amounts of Training

62

2. Fully Connected Linear Neural Network

The second linear neural network model to be demonstrated is fully connected,

i.e. it has all of the input elements connected to each of the output elements. The belief was

that the network was not being given enough parameters to describe the system, including

any noise dynamics. This highly overparameterized neural network has a parameterization

similar to that suggested by [Ref. 6:pp. 1 15-126] for multivariable systems. It is interesting

to note that the fully connected neural network, which is intuitively a more natural

parameterization, is similar to that recommended for multivariable systems. The 32

parameters used in the previous example are replaced by 80 parameters. The input was also

slightly modified. The random binary (RB) input was bandlimited by allowing it to change

every two samples instead of every sample. The resulting pseudo random binary (PRB) input

is shown in Figure 32. The severe drop in spectral energy above four Hertz was intended to

1 5 1 1

Sample PsevP,* a^nOQm pmery inpyl Seauejr;? ,

,

1

5

-n nn nn nn n
j-i r-|

n n
1
—

1

n r1 n ni—

1

i—Ifll

—

3
Q
C

- -

- 5 - "

, I 1 i 1 1 1

2 4 6 6 10 12 14 16 IB 2D

Time cseconas) Ts=o,i Seconos

SamDie Pseuao Bsnaom Binarv Seouence Soectral Contem
10»

1

llllll

- -

o
D

C
a-

2

id'

10' m
1

10"'

E E

10"*

ID 10"' 10"' ID"' 10° 10

Frequency cuertz]

Figure 32: Pseudo Random Binary Input Sequence and Spectral Content

63

limit the excitation of the high frequency noise. Using a network parameterized in this

fashion, the dynamic estimation error for all outputs went to zero in less than 5000 cycles

(500 seconds). The error for each output resulting from testing this model with the swept

square wave in Figure 25 was smaller than the precision of the Neuralworks program as

shown in Figure 33. Comparison of the specific parameters in this model with those for the

true system is difficult. This network appears to have developed a near exact model for the

input-output relationship of the true system. Two factors allow this network to perform

far better than the network parameterized as four transfer functions. The highly

overparameterized nature of this network allows parameters to be used to model noise

dynamics and provide a better balanced representation of the system. At the same time, the

fully connected structure allows crosstalk between outputs, providing a means for outputs to

develop dependencies on past values of other outputs. Thus, through the use of better

parameterization and a bandlimited input, the linear neural network performed very well at

the estimation of the longitudinal motion of the A-4 aircraft.

A linear neural network can successfully produce a near exact model for the A-

4 longitudinal modes. However, neural network estimators are limited by the same concepts

of persistent excitation, information content, and sampling time as least squares estimators

introduced in Chapter III. From the first example, it appears that the neural network

attempts to make the best balanced realization of the model possible with the given number

of parameters. From the second example, the use of a fully connected neural network

estimator proved to be much more successful. This result lends some credence to the use of

fully connected neural networks and demonstrates the ease with which neural network

parameterizations can be changed. By demonstrating two examples of a linear neural network

in parameter estimation, the natural manner in which estimation problems can be represented

in neural network structures has been shown, as well as the similar effects of concepts such

as persistency of excitation, information content, parameterization, and sampling time in

neural networks and classical estimators.

i
64

Predict Ion Frror for Uf t

1

Prenirtion Frror for AlPHAril
06

0< 0.0.4 -

j^
02 -

i_
02 - -

o
I.

I.

IM

o

i;
-

1/1

3 3
"-0 02 ~ "-0 02 "

-0 04 - -0 ,
0-1

- -

-U . 06
1000 2000 3000 •4000 5000 1000 2000 3000 4000 5000

Time CSeconas^i Time CSeconas)

Preaiction Esroi lor Qi" tl , „ Prediction error ror THFTArt'i

o< 0.0'< - -

^_
.02 ^

^ 02 - -

o

L.

Ill

o

m _

I/)

3 3

"-0.02 ' ^-0, 02 '

-0 0< - -0.0^ -

D 1000 2000 3000 < 000 5000 1000 2000 3000 4000 3000

T . me c seconos) T 1 me c seconas)

Figure 33: Prediction Error for Fully Cc nn ected Network

3. Nonlinear Neural Network Estimators

The power of Backpropagation lies not in its ability to model linear systems, but

in its ability to model nonlinear systems. In the following paragraphs, the use of this

capability to model systems will be investigated. The use of a nonlinear network to develop

a model for the linear system represented by Condition 1 will be discussed. This nonlinear

neural network will then be extended to the modelling of the nonlinear system represented

by multiple flight conditions. The estimation process in the neural network adaptive control

structure is made nonlinear by the addition of one or more hidden layers of elements with

nonlinear activation functions inside the network internal system model as discussed in

Chapter V, Section C. Nonlinear neural network estimators pose two problems in addition

to those described in Chapter V for all estimators. First is the selection of the number of

elements in the hidden layer. This is done empirically due to the lack of any other method.

For the single condition network, the same number (20) of elements were used in the hidden

65

layer as the number of elements in the regression vector. For the multiple condition network,

160 elements were used in the hidden layer. The other problem involves determination of

the gain used in equation (2.12). For the linear neural network, this gain could be absorbed

directly in the learning rate, however for nonlinear activation functions, the gain is inside

the function. The most important effect of this gain is on the sensitivity of the activation

function to inputs. For semilinear activation functions, a high gain causes the activation

function to approximate the signum function, taking on values of -1.0 and +1.0 for almost

all values of the input. A very low gain causes the activation function to behave in a more

linear fashion. Again, determination of the activation function gain is done empirically. For

this investigation, values for the gain between 0.5 and 1.0 were used. The use of nonlinear

neural networks in estimation adds considerable capability at the expense of some additional

complexity.

4. Nonlinear Network Modelling Linear System

The first nonlinear neural network estimator was trained using the M 0.4/Sea

Level condition. The layers were fully connected. The input used was the original random

binary input. The order of the dynamic RMS estimation error at 5,000 cycles (500 seconds)

was on the order of 0.05, or five percent of the maximum value, for each output compared

with nearly zero for the fully parameterized linear network described above. By 50,000

cycles (5,000 seconds) the dynamic RMS estimation error was on the order of 0.01 for each

output. Providing ten times the training did not significantly change the amount of error in

the system. This represents better performance than that for the linear neural network

estimator parameterized as four separate transfer functions, but worse than the performance

of the fully connected linear neural network estimator. A frequency domain analysis of this

model may help to better understand the performance of this network. It is impossible to

produce typical frequency response plots for nonlinear systems, however, spectral transfer

functions can be developed from the input-output data. This is done by recording model

input and output sequences. The sequences are then windowed and transformed into the

complex frequency domain using a fast fourier transform. A complex transfer function is

66

developed by dividing the complex output spectrum by the complex input spectrum at each

frequency. The magnitude and phase characteristics of the transfer function may be

approximated by the magnitude and phase of this spectral transfer function. In this case, the

input and output sequences were 9000 cycles long, and the data was broken up into

overlapping 2048 point segments which were windowed using the Manning method. The

resulting spectra are averaged to smooth out the curves. This is known as Welch's method.

Further information on this technique is available in [Ref. 11]. The spectral transfer

functions for the 5,000 and 50,000 cycle models are given in Figure 34 through Figure 37.

Figure 34 shows the spectral transfer functions for u(t) where the frequency response is well

modelled across the spectrum with the exception of small errors in the very low frequencies

and considerable noise in the higher frequencies. Note also that increases in training do little

to improve the model. The same is true for the spectral transfer functions for a(t) shown in

Figure 35. The spectral transfer functions for q(t) in Figure 36 are very close to the true

system frequency response and there is little high frequency noise. The spectral transfer

functions for 0(t) in Figure 37 exhibit the same model and noise characteristics as u(t) and

Q(t). Note that the models are all relatively good, however, the very low and very

frequencies are corrupted. Developing better nonlinear models is a topic which deserves

further study.

5. Multiple Condition Nonlinear Neural Network Estimator

The nonlinear neural network estimator described above may be easily extended

to the modelling of nonlinear systems. This is done by incorporating some measure of the

nonlinearity in the regression vector. For this investigation, the nonlinearity is provided by

including the mach number and altitude in the regression vector as discussed in Chapter V.

Four of the conditions described in Chapter V (Conditions I, 3, 4, and 5) were used to train

the network which was tested on the fifth (Condition 2). The network was trained for 36,000

cycles (3600 seconds) and 360,000 cycles (36,000 seconds) with the condition changing every

9000 cycles. The results for conditions on which the network was trained were similar to

those already described in Figure 34 through Figure 37. The same type of results for the

67

bysiem frequency ana NeL«oric spectral Besponse for ujt)
10'

r\ ' '
'ill

1
ill I

1
11.

' '
'

10"

ID''

;
\

C

' 10-'

tm_a ^ ft imk 1 II

1 \r<e»v.itli*<*><i a'-ki. 1

*iliiimiH!i.l»i«iai
iillljr IHirdlMl*

» «l I^MIKI
a (II 1 i'Wiiii
II 1 1 ^2*

j i 1. Ill
k.Jhl fti 1 II 1 II 1

IMglHUMIKIUil . I.I >i

|k!){!'IM^Ubh

10-*

\liii <• i|iWam»»ii

_ _ 5Gk eye les \
10-' _ - 5k eye les \^

True System

10-'
10'' 10"' 10'' 10° 10'

M -4/560 Level Frequency - Mertz Miaoen Layer

Figure 34: Spectral Transfer Function for u(t)/Nonlinear Hidden Layer

System Frequency eno NetworK Spectral Response for AipnaCt)
T 1 1 I I I —I 1

1—I—I I I I 1 1 1
1—I—I I I I 1 1 1

1—I—I I L

50k eye les

5k eye I ee
True System

u 4/ Sea Level

10"

'

F r equenc y - Mer t z Miooen Layer

Figure 35: Spectral Transfer Function for Q(t)/Nonlinear Hidden Layer

68

System Frequency ana NeiworK spectral Response for qct)
10'

"

-

10"

D
3

C
O
o
3

1
I
1
1
1
1

]

1

1

-

10-'

; :7/ -

_ _ 50k c V* t es

_ _ 5K cy/ies

^ True System

-

10'' 10"' 10'' 10° 10'

M 4/ sen Level Frequency - Hertz Hiaaen Layer

Figure 36: Spectral Transfer Function for q(t)/Nonlinear Hidden Layer

10'

10-'

10"'

10'*

System Frequency ana Networt spectral Response for Tnetactj
-I 1

1—I—I—I I I I T. 1 1
1—1—I

—

1111 1 1

'—I—1—I I I I 1 1
1—I—I—r-r-

50k cycles
5k cycles
True Systen

10''

M -4/ sea Leve i

_i I 1 1 I

10" '

Frequency - Hertz

10°

Hiaaen Layer

Figure 37: Spectral Transfer Function for 0(t)/Nonlinear Hidden Layer

69

untrained condition (M 0.5/15,000) are shown in Figure 38 through Figure 41. The spectral

transfer function for u(t) for the untrained condition is shown in Figure 38. The frequency

response is relatively good with the exception of significant noise in the frequencies above

0.5 Hertz. The spectral transfer function for a(t) in Figure 39 is much better across the

entire frequency range, however some noise dynamics are apparent in the range of

frequencies above one Hertz. The spectral transfer functions for q(t) in Figure 40 show good

response across the entire spectrum. The spectral transfer functions for 6(t) in Figure 41 are

similar to those for a(t) and u(t) with some noise dynamics present in the higher frequencies.

An interesting phenomena is the fact that at the moment the simulation changes

from one flight condition to another, the dynamic RMS error rises sharply then drops,

indicating that the network is 'relearning' that particular condition. This may imply that the

network model selection is not sufficient to fully model the nonlinearities of the multiple

models. This method provides a good model for trained and untrained conditions. However,

further study is again warranted to determine whether a better model structure may be found

to represent the nonlinear system. Nonlinear neural networks can be effective in modelling

nonlinear systems, however some further work on determination of the number of hidden

elements must be done.

The use of neural networks in estimation has been demonstrated in the previous

paragraphs. The similarity between neural networks and classical estimators was

demonstrated, as well as the ease with which neural networks can be reconfigured. The

power of the network to choose its own parameterization was also demonstrated. Justification

for the use of fully connected neural networks was described. Also, the use of nonlinear

activation functions to model nonlinear systems was shown. The structure developed for the

neural network adaptive controller is successful at estimation applications.

C. CONTROL USING THE NEURAL NETWORK ADAPTIVE CONTROLLER

The neural network adaptive control structure is also a successful controller. An

important issue in the use of adaptive controllers is the fact that closed loop systems corrupt

70

System Frequency eno Networic Spectral nesponse for uCt.3

ID'

___^i^
10°

-

10-' - -

10"'

10"' -

! '"'\
1 f

'^
III

II

II

1
1

• IT 11V*

\ "^fi
\ w.\ 'Villi

\ III

'

\ iti
\ r-f
\ 1

-

10-'

_ _ 360k eye 1 es

\ 1

\ [

10-' _ _ 36ic cycles
True System

I 1 1 1 1 i i 1 I 1 I II 1
III 1 1111 1 1 1

M 0,5/15. 000 rt Frequency C^ei'^z;) Mu I t I moae

Figure 38: Spectral Transfer Function for u(t)/Untrained Condition

SvsteiT Frequency ar.o Net wc'f k Spec t r e Response for Aipnact}
10'

:

- -

- -

10°
: ——^z,=^=^~-.. r^r.E=i

=5^^^^^ \ :

-

\\

-

3

10-' V I

10

3

10-'

-

_ _ 360fc eye 1 es

_ _ 361c cycles
___ True System

\\
Vo

10"'
10-' 10"'

M 0,5/15, 000 ft

10-'

Fr eauency C Her t

10°

) Mu 1 t 1 moae

i

10'

Figure 39: Spectral Transfer Function for a(t)/Untrained Condition

71

10"'

Sysiem Frequency ana Networt Spectral Response for qct)
-I—I I I I

1 1 1—I—I—r t r 1
1 1 1—I—I—r-i t i

360K eye I es
36tc cycles
True System

i I I ' ' ' —I 1 1 1 1—L _J I—I 1,1-

u 5/ 15 . 000 f

l

10''

Frequency C "©'' t z ^ uu I t I moae

i

Figure 40: Spectral Transfer Function for q(t)/Untrained Condition

System ana Nei»or>c Mooe 1 Frequency Response tor rnetact)
10'

E '

. '

'

'

~
/,\

"
^ / \

10°

\

^/^ N^^

-...^^^^^

10-'
\

\\̂V
10-'

I \/??
- '\ f '

3

10-'

F

"\
10-'

^

_ . 360t cycles
_ _ 36ti cycles

True System

\

10"' '

10'' 10-'

M 5/15, 000 ft

10-' 10°

Frequency C"ert25 Muitimoqei

10'

Figure 41: Spectral Transfer Function for 6(t)/Untrained Condition

72

the input. This may eliminate any persistency of excitation present in the input. The model

does not have to be exact, however, to produce a good controller. The model only has to be

accurate over the range of frequencies in which the controller is active. This should be

provided by the control inputs themselves. The simple example of a neural network

demonstrated here shows the noise rejection capabilities of a linear neural network controller.

Using the random binary input, the noise rejection capabilities of the neural network

adaptive control structure can be demonstrated. Since adaptive controllers have proven

effective in noise rejection in the past, it was hoped that the neural network adaptive

controller would be effective as well. The network used for this part of the investigation was

the same as that used for the fully parameterized linear neural network estimator. The flight

condition was Condition 2 with a mach number of 0.4 and an altitude of Sea Level. The plot

in Figure 42 shows the control input which the network produced in response to the random

binary input for the first 9000 cycles (900 seconds). Note that the input goes asymptotically

to zero as the network rejects the white noise, random binary input. The network dynamic

RMS estimation and tracking errors are shown in Figure 43 through Figure 46. The dynamic

estimation error is the error in the model or prediction as the network trains. The tracking

error is the difference between the model reference output and the network output as the

network trains. In Figure 43 the tracking error and estimation error both appear to go to

some small value. The estimation error and tracking error for Q(t) in Figure 44 are much

more descriptive. Note how the estimation error goes to zero while the tracking error goes

to some steady state value. The same result can be seen in the estimation and tracking error

for q(t) in Figure 45 and for 0(t) in Figure 46. The estimation error for all of the outputs

is decreasing, but has not gone to zero as in the fully parameterized linear neural network

estimator. This is due to the loss of persistent excitation in the control input. Also, note the

fact that the tracking error for all four outputs goes to some steady state error value. Within

the 9000 cycles (900 seconds) that this model was trained, the white noise random binary

input signal was rejected. In this simple example, the use of a neural network adaptive

controller to reject noise has been effectively demonstrated.

73

D. SUMMARY

The effectiveness of neural network adaptive controllers in estimation and control has

been demonstrated in this chapter. The static and dynamic stability of the neural network

adaptive control structure was shown. The effects of persistency of excitation, information

content, and sampling time on the estimation process were demonstrated using a linear

network. With the addition of more parameters, this linear network could develop an exact

model for the system. The use of nonlinear neural networks in estimation was then

demonstrated to develop models for linear and nonlinear systems. The importance of

developing the theory necessary to use nonlinear neural networks was discussed. Finally, the

use of a simple neural network adaptive controller in noise rejection was demonstrated and

the effects of adaptive control on estimation were discussed. This neural network adaptive

control structure shows tremendous promise for future applications.

74

Network Determined Control Input—

1

1 1

^~

100 20[30 400 500 600 700 800

Time (Seconds) Random Binary input

Figure 42: Network Determined Control Input/Noise Rejection

Est imat ion Error for urtl

?i - -

? r -

15

1
_

If 1
'i\

_

05 I

ih^
-

1 , I 'v\Mr\A^j',W v^n . a/va>«»aa«. ^./»^A. «,^.

100 200 300 lOO 500 600 700 BOO 900

Time CSeconas^ Random Binary Input

__,
I

Tracking Er ror for urn
^ ^ ^

A A A n. r\(\A .^Akll\,l^^r(\ >

100 200 400 500

Tiine CSeconos^

600 700

Ranaofii Binary Input

BOO 900

Figure 43: Estimation and Tracking Error for u(t)/Noise Rejection

75

Estin^ation Error (or ALPHArtI

U 4i_

100 200 <00 500

.me CSeconas)

EOO 700 800

Random einory Input

Tract . na Frror for ALPHAftl

500

Tie C Seconos^

600 700

Ranoora a I nary I nput

Figure 44: Estimation and Tracking Error for Q;(t)/Noise Rejection

Est. mat ion Error for Or t 1

t'.'

'.Mifikj ^AV^VA;1.7\^A,Ak\A«^, ji./w^UA^. /VsA^^^^Vft AAA n^.fl^ ^ n^ A^rNfc^ w^^^AA* A,^

100 POO <00 500 600 700 800

T.me CSeconos) flanoom e.nary Input

Trart.n? Prror fqr or l I

<00 50C

T . me C Seconos;)

Figure 45: Estimation and TRacking Error for q(t)/Noise Rejection

76

Estimation Error for THETArtl

M^i^/W\^A/'u»;\^A/Vf^^^^A^/VAt^A>vM^lww\^^ »a/v.iC^ r^l^i\-r'^iJ\ ur-^/^r\Ur^f,

300 100 5O0

T ime C Seconasj

600 700

Ranaom Binary input

Tract I ng Error for THETArtl

uyiiiii

300 400 500

Time CSeconas)

600 700

Ranaom Binary input

Figure 46: Estimation and Tracking Error for 0(t)/Noise Rejection

77

VII. CONCLUSIONS AND RECOMMENDATIONS

Neural networks are effective in the solution of adaptive control problems. As systems

become more complex and the requirements placed on them become more demanding,

parallel distributed processing applications will become an important tool in the design of

adaptive controllers. In this thesis, a neural network adaptive control structure was developed

from similarities in neural network, estimation, and control theory. The effectiveness of this

structure was tested in the estimation and control of linear and nonlinear approximations of

the longitudinal motion of the A-4 aircraft. The difficulties which the system of longitudinal

motion of the A-4 aircraft presents to conventional estimation and control were discussed.

Various significant concepts in estimation and control were discussed and demonstrated using

the neural network adaptive control structure. The significance of parameterization for

estimation applications as well as neural networks in general was illustrated. A theoretical

basis for the scaling of data and the choice of learning rate in neural networks was developed.

The concept of the semilinear activations providing robust linear characteristics was

discussed. The neural network adaptive control structure developed for this thesis

demonstrated the applicability of parallel distributed processing tools to adaptive control.

The neural network adaptive control structure introduced in this thesis was developed

in a manner consistent with adaptive control theory. The concept of estimation involving

the mapping of some regression vector of past input and output measurements into the

current output measurement was developed. The idea of a general control structure involving

the weighted sum of some state variable and a reference input was also discussed. From these

concepts, a structure for a neural network adaptive controller involving an estimation and

control process using the Backpropagation neural network type was determined. As an

estimator, the neural network maps a regression vector into a current measurement. As a

controller, the neural network maps the regression vector into a control input, which is then

fed forward through an internal model of the system and compared to some reference output

78

in order to adjust the weights, or gains, of the controller. Unlike conventional adaptive

control schemes, the neural network adaptive controller is easily extended to nonlinear

estimation and control. This structure proved to be flexible and robust.

Implementation of this neural network adaptive control structure was demonstrated on

the system of longitudinal motion of the A-4 aircraft. Estimation and control capabilities

were shown. First, the stability of a linear neural network estimator was demonstrated.

Following this, two linear neural network estimators with different parameterizations were

illustrated. The first, parameterized as four separate transfer functions, developed a fair

model of the system while demonstrating the susceptibility of neural networks to a variety

of problems known from estimation theory. The other, fully parameterized, neural network

estimator modelled the system exactly. The similarities between estimation theory and neural

networks was demonstrated using these two linear estimators.

Two nonlinear neural network estimators were then demonstrated. Very little theory

exists to help determine the structure of nonlinear neural networks. For this investigation,

empirically determined neural network estimation structures were used to develop models for

linear and nonlinear systems. The linear system which was to be modelled was the same one

used for the linear estimators. The nonlinear neural network which was used to model a

linear system performed well, but not as good as the fully parameterized linear estimator.

The nonlinear system to be modelled was formed by presenting a number of different linear

models to the neural network. The nonlinear network which was used to model a nonlinear

system was relatively successful at modelling the nonlinear flight conditions and generalizing

for flight conditions on which it was not trained. These two demonstrations illustrated the

capabilities of neural network estimators to model nonlinear systems.

Using the linear neural network adaptive control structure, noise rejection capabilities

similar to those of other forms of adaptive controller were demonstrated. The neural network

adaptive controller was highly successful at rejecting a random binary, white noise input.

This thesis has shown that neural networks have tremendous potential in the field of

adaptive control. Further study on this specific adaptive control structure should be made.

79

The use of this structure to develop various combinations of nonlinear and linear control and

estimation should be studied. For nonlinear networks, a theoretical basis for the number of

elements, and convergence and stability characteristics are needed. For all types of neural

network, better ways to adapt the gain need to be developed to avoid the problems of scaling

and changing the learning rate. With the demands on current forms of control steadily

increasing, the need for real time parallel distributed processing applications in control will

become essential.

80

REFERENCES

1. Bavarian, Behnam, "Introduction to Neural Networks for Intelligent Control", IEEE
Control Systems Magazine, v. 8, no. 2, pp. 3-7, April, 1988.

2. Rumelhart, D. E., J. L. McClelland, and the PDP Research Group, Parallel Distributed

Processing: Explorations in the Microstructure of Cognition, The MIT Press, 1988.

3. Klimasauskas, C.,and others, Neuralworks Professional II Manual, Neuralware, Inc.,

1988.

4. Hecht-Nielsen, "Kolmogorov's Mapping Neural Network Existence Theorem", IEEE
First International Conference on Neural Networks, 1987, The Institute of Electrical and
Electronic Engineers, Inc., 1987.

5. Goodwin, G. C, and K. S. Sin, Adaptive Filtering, Prediction, and Control, Prentice-

Hall, Inc., 1984.

6. Ljung, L., System Identification: Theory for the User, Prentice-Hall, Inc., 1987.

7. Astrom, K. J., and B. Wittenmark, Adaptive Control, p. 14, Addison-Wesley Publishing

Co., 1989.

8. Kawato, M., and others, "Hierarchical Neural Network Model for Voluntary Movement
with Application to Robotics", IEEE Control Systems Magazine, v. 8, no. 2, April 1988.

9. Sun Microsystems, Inc., The Sun 386i. The Corporate 386, 1988.

10. Neuralware, Inc., Neuralworks Professional 11 on Sun Workstations, 1989.

11. Moler, C, J. Little, and S. Bayert, Pro-MATLAB User's Manual, The Mathworks, Inc.,

1897.

12. Etkin, B., Dynamics of Flight--Stabiliiv and Control, 2d ed., John Wiley & Sons, Inc.,

1987.

13. Nelson, R. C, Flight Siahilily and Automatic Control, McGraw-Hill, Inc., 1989.

14. Harris, C. J., and S. A. Billings, ed., Self-Tuning and Adaptive Control: Theory and
Applications, pp. 109-141, Institution of Electrical Engineers, 1981.

APPENDIX A: NEURALWORKS PROFESSIONAL II ASSOCIATED PROGRAMS

Source: simo.txt

Executable: simo
Version: 3.1

Date: 22 November 1989

Author R. W. Scott

Project: Neural Networks in Adaptive Control

Environment: UNIX/SunOS C
Path: eileen:/home/rscott/nworks/texlfiles

Description: This is a prototype for the USERIO program spawned by

NWORKS Professional II to provide input and output

vectors for the use of an adaptive control neural

network. The program operates by running a simulation

of the longitudinal motion of the A-4 aircraft at

the same speed as sampling time of the network.

Numerous different input t)j)cs are available. The
simulation may be run at various flight conditions as well.

The structure for control is available, however, only the

estimation portion of the program is provided.

Revisions: —Inclusion of multiple input t^-pcs

—Inclusion of easy overparamaterization
>•»««••••«»•••«*

/• Include the following external modules '/

#include <stdio.h>

#include <math.h>
#include "userutl.h"

#include "transfer.h" /' File of parameters */

/• Neuralworks calls the USERIO program through the function UsrIO '/

int UsrIOO

{

/* Declarations */

extern double sin(); /* Sine function '/

extern double pow(); /* Power function */

extern double fmod(); /' Remainder function '/

extern long random(); /* Random number generator */

extern char •condition_name[];/* Names of conditions */

extern char *input_name[); /* Names of inputs */

extern char *filter_name[]; /' Names for filters '/

extern double altitude[]; /' Altitudes */

extern double mach[]; /* Mach numbers */

extern double noise_coeffj3)(5];

extern double num[5](4](4]; /' Numerator coefficients */

extern double den[5]|4]; /* Denominator coefficients */

extern double freq(]; /* Frequencies for composite sine '/

extern double weighis[]; /' Weighting of frequencies '/

extern double ts; /* Sampling lime •/

82

/* Random phase for sine waves */

static double phase(8] = {0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0};

static int profile ={0};

static double tot_wi = {0.0};/* Total weight for comp sine '/

static int redraw,in = {0}; /* Redisplay initialization flag */

static double checkl; /* Check flag */

static double check2; /* Check flag */

static double count = {0.0}; /' Display counter */

static int condition; /* Selected condition */

static int input; /* Selected input */

static int filter, /* Selected filter */

/* RBS Uniformly Distributed White Noise Sequence '/

static double noise[5] = {0.0,0.0,0.0,0.0,0.0};

/* Fedback regression vector '/

Static double feedback[19] = {0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0.0.0,0.0,

0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0};

/' Ref input + regression vec '/

static double command[20] = {0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,

0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0 }

;

/• Regression vector applied to NN */

static double control[20] = {0.0,0.0.0.0,0.0.0.0.0.0,0.0.0.0,0.0,0.0,

0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0 }

;

/* Plant response to regres.sion vector */

static double plantl4]= {0.0,0.0,0.0,0.0};

/• Model reference output */

static double reference[41= {0.0.0.0.0.0.0.0};

static double rcount.rmem; /' Counters for generating inputs '/

int i,j; /* Indices */

char buf(90]; /' Display buffer '/

char *sp; /* String pointer '/

/* Definitions */

#define MAXRAND (0x7fffffff 1

)

#define rand random

/* Define layer names */

#define feedbackjay

#define commandjay 1

#define control_lay 2

#define plant_lay 3

#define referencejay 4

/• initialization here (if necessary) '/

lORTNCDE = 0;

83

switch (lOREQCDE) {

case RQATTENTION:

/• User select input to be used */

Again3:

sprintf(buf,"\nEnter Desired Input Type (1. %s. 2. %s. 3. %s",

input_name[l],input_name(2],input_name|3]);

PutStr(buf);

sprintf(buf,'\n4. %s, 5. %s, or 6. %s)\
input_name(4],input_name[5],inpul_name[6]);

PutStr(buQ;

sp = GetStrO;
sscanf(sp, "%ld", &input);

if(input >6.
1

1 input <1.){

sprintf(buf, "\n%s",input name[0]);

PutStr(buf);

for(i = 0;i<1000;i++){

}

goto Again3;

}

/* User select condition to be used '/

Again:

sprintf(buf,"\nEnter Desired Mach Number and Altitude (1. %s, 2. %s,'

condition name[l),condition_name[2]);

PutStr(buf);

sprintf(buf,"\n 3. %s, 4. %s, or 5. %-s)",

condition_name[3],condition_name[4],condition_nanie[5]);

PutStr(buf);

sp = GetStr();

sscanf(sp, "%ld", &condition);

if(condition >5.]| condition <1.){

sprintf(buf, "\n%s",condition_name[0]);

PutStr(buf);

for(i = 0;i<1000;i++){

}

goto Again;

}

if(input= =2| |input= =5| |inpui= =(>){

Again2:

sprintf(buf,"\nEnlcr Desired Filter (I. '7(S. 2. ')is. or 3. %s)?",

rilter_name[l],rilier_name|2].filter_nanic(3|);

PutStr(buf);

sp = GetStr();

sscanf(sp, "%ld", &rilter);

if(filter >3. II filter<l.){

sprintf(buf, "\n%s",filier_name|0]);

PutStr(buf);

for(i = 0;i<1000;i++){

}

goto Again2;

}

}

/• Display selections */

sprintf(buf,"\nGDndition: %s Input: ^s selected",

condition_nanie[condiiion|,input_name(input]):

PutStr(buf);

if(input= =4){

PutStr("\nEnsure LR is set to zero for test");

}

in = l;

break;

84

case RQREWIND:

/• rewind here */

count = 0.0;

break;

case RQLSTART:

/• learn start '/

/* initialize condition and input if not already done so */

if(in==0){

input = 1;

condition = 1;

in = l;

}

/• check if user wishes to redisplay after every plot reaches the end */

PutStr("\nHow often do you wish to redraw the screen (0 for never)?");

sp = GetStr();

sscanf(sp, "%ld", &redraw);

/• compute the total weights for composite sine wave */

for(i = l;i<8;i++){

tot_wt= weight [i] + tot_wt;

}

/* start random binary or composite in time sequence */

if(input = = 1
1

1 input = = 6){

rcount = 0.0;

miem = rand() % 4;

command[0] = pow(-1.0,rmem):

}

/* start filtered random binary sequence '/

if(input= =2){
rmem = rand() % 4;

noise [0] =pow(-1.0,nnem);

command[0] = noise_cocff[filier-l|[0]*noisc[0);

for(i = l;i<3;i+ +){
command[0] = command[0] + noise_cocfr|fillcr-l]|i]'noise(i];

command[0] = command[0]-noise_cocfr|niier-l]|i + 2)*noise[i + 2];

noise[i] = noise[i-l];

}

noise[4] = noise[3]:

noise[3] = command[0];

}

85

/' start composite sine wave sequence '/

if(input==3){

for(i = 0;i<8;i++){

rmem = rand() % 10;

phase[i) = miem'3.1415927/5.0;

}

comniand[0]=0.0;

for(i = 0;i<8;i++){

command[0] = command[0]+weight[i]/tot_wt*sin((freq[i])'count'ts + (phase[i]));

}

)

/• start test sequence (swept square wave) '/

if(input= =4){
rmeni = 90.0;

rcount=90.0;

command[0] = pow(-1.0.rmem);

}

/* start composite simultaneous sequence '/

if(input==5){

rmem = rand() % 4;

command[0] = 0.1'pow(-1.0,rmem);

miem = rand() % 4;

noise[0] =pow(-1.0,rmem);

command[0] = command[0] + noise_coefr|filier-l][0]'noise[0];

for(i = l;i<3;i+ +){
command(Oj = command[0] + noise_coeff(fillcr-ll[i]*noise(i]:

command[0] = command(0]-noisc_cocff|filier-ll|i + 2|*command[i]
noise[i] = noise[i-l];

}

}

/• display the starting conditions '/

sprintf(buf, "\nCondition: %s Cycles: %{ Input: %s",

condition_name(condition], count, input_name[input]);

PutStr(buf);

break;

case RQLEARNIN:

/* input command layer to the network */

if(IOLAYER== feedback-lav && 10CC)UN'r= = 10){

for(i = 0; i<19:i+ +){'

10DATA[il = fcedback(il;

}

}

/• input feedback layer to the neUvork */

if(IOLAYER==command_lay && IOCOUNT==20){

for(i = 0;i<20;i+ +){
IODATA[i]=command(i]:

}

}

break;

86

case ROWRSTEP:

/• output control layer from network */

break;

case RQLEARNOUT:

/• present plant or model response to the network '/

if(IOLAYER==plant_lay && IOCOUNT= = 4){

for(i = 0;i<4;i+ +){
IODATA[i] = piant[i];

}

}

if(IOLAYER==referenceJay && IOCOUNT= =4){

for(i=0;i<4;i+ +){
IODATA[i] = referencefi];

}

}

break;

case RQLEARNRSLT:

/* control output from network */

if(IOLAYER==controlJay && IOCOUNT==l){

for(i = 0;i<20;i++){

control[i] =comniand[i];

}

control(0] = IODATA|01;
/* generate system and model response lo this conirol inpui '/

for(i = 0;i<4;i+ +){
plant[i]=0.00;

reference[i]=0.00;

for0 = 0;j<4;j++){
plant [i] = plant[i] + num[(cond it ion-l)]|i)|j]* (cent rol[Jl);

plant[i] = plant[i] + dcn[(condilion-l)][j]'(conlrol|4'(i + 1) + j]);

}

reference[i] = reference[i] + nuni [l](i 1(0] 'command [0]:

reference[i] = reference[i]+dcn[l](0] 'control [4 '(1 +])];

for0 = l;j<4;j++){

reference[i] = referencc[i] + num(]](i][j]'conirol|j];

reference[i] = referencc[i] + dcn|l]||)'conirol|4'(i + l)+j];

}

}

for(i=0;i<4;i++){

if(plant|i)> 100.0 || plani|i|<-100,0){

plant|i] = 0.0,

}

if(reference[i]> 100.000]| reference|il<-100.0){

plant[i) = 0.0;

}

}

}

87

/• system identification result out from network '/

if(IOCOUNT==4 && IOLAYER==plani_lay){

/* shift the regression vectors */

for(i = 0;i<19;i++){
feedback[i] = controI[i];

}

for (i = 0;i<19;i++){

command[i + 1] = control[i];

}

/* generate a new random binary input '/

if(input= =1){
rcount + +

;

command(0] = command[]];

if(fmod(count,2.0)<1.0){

rmem = rand() % 4;

command[0] = pow(-1.0,rmcm);

}

}

/• generate a new filtered random binary input */

if(input==2){

rmem = rand() % 4;

noise[0] = pow(-l.O.rmeni);

commandfO) = noisc_cocfr[rilter-l][0]'noisc[0];

for(i = l:i<3;i+ +){
command[0] = command [0] + noise_coeff[filicr-l][i]'noise[i];

command[0] = command(01-noise_cocff|filicr-l]|i + 2]'noise[i +2]

noise[i] = noise[i-l];

}

noise|4| = noise[3];

noise[3) = command(0|;

}

/* generate a new composite sine wave mput '/

if(input==3){

commandfO] = 0;

for(i = 0;i<8;i++){

command[0] = command [0]+ weight [i]/iot_wt 'si n{(frcc|fi]) 'count' IS + (phase[i]));

}

}

/* generate a new composite simultaneous input '/

if(input= =5){
rmem = rand() % 4;

noise[0] = pov,(-1.0,rmem);

command[0] = noise_coefr(filicr-l]|0]*noisc|n];

for(i = l;i<3;i+ +){
command[0) = command(OJ + noise_coeff|fil!er-l)[i]*noise[i];

conimand[0] = command[0)-noisc_cocff(filtcr-l](i + 2]'noise[i + 2];

noise(i] = noise[l-l),

}

noise[4] = noisc|3|;

noise[3] = commandfO]:
nnem = rand() <7r 4;

commandfO] = commandfO] + 0.1'pow(-l,0.rnicni);

}

/• generate a new test (swept square wave) input */

if(inpul= =4){
rcount—

;

if (rcount < =0.0){

rnicm—

:

rcount = rnicm;

if (rmcm<=0.0){
rniem = 90.0;

rcount = 90.0;

}

}

command[0] = pow(-1.0,rniem);

}

/* load the regressors with system and model responses */

for(i = 0;i<4;i+ +){
command[4'(i + 1)) = -plant |i|;

feedback[4*(i + 1)-1] = -plani(i]:

}

/* increment the counter and update displays as neccssar)' '/

count + +;

checkl = fmod(count,10.);

if(checkl<1.0){

sprintf(buf, "\nCondition: %s Cycles: %f Input: %$',

condition_name[condition], count,inpui_name[input]);

PutStr(buf);

}

check2 = fmod(count,300.);

if(check2<1.0){

profile + +;

if (profilc>=30){

for (i = 0;i<iy;i+ +){

feedback[il=0.0;

command|i + 1] = 0.0;

}

profile = 0;

}

}

if(redraw ! = 0){

if(fmod(count,(double)redraw)<].0){

IORTNCDB=l:
}

}

89

/• generate a new composite in time input (requires the use of counters) '/

if(input= =6){

if(checkl > =chcck2){

nnem = rand() % 4;

command[0] =pow(-].O.rmcm);

noise[3] = 0.0;

noise[4]=0.0;

}

else{

rmem = rand() '7c 4;

noise[0] = pow(-1.0,rniem);

command[0] = noise_coeff(filter-l][0]'noise[0);

for(i=l;i<3;i+ +){
command[0] = command[0] + noise_cocrr[filicr-l](i)'noise[i];

command[0] = command[01-noisc_coefr(fiUcr-l)|i + 2]*noise[i + 2];

noise[i] = noise[i-l];

}

noise[4] = noise[3]:

noise(3] = command[0];

}

}

}

/* control result out from network */

if(IOCOUNT==4 && IOLAYER= = reference lav)

{

}

break;

case RQLEND:

/• end learning mode, display current status '/

sprintf(buf, "\nCondition: %s Cycles; '^f Input: "^s",

condition_namc[condrtlon]. count. inpui_namc(input]);

PutStr(buf);

break;

case RQRSTART:

break;

case RQREAD:

break;

case RQWRTTE:

break;

case RQREND:

/• end recall '/

break;

90

case ROTERM:

/* terminate userio '/

sprintf(buf, "\nCondition: "^rs Cycles: ^i-r.

condition_namc[condition], count);

PutStr(buf);

break;

}

return;

* Source: transfer.txt

* Executable: simo
* Version: 1^
* Date: 22 November 1989
' Author R. W. Scott
* Project: Neural Networks in Adaptive Control
* Environment: UNIX/SunOS C
* Path: eileen:/home/rscott/nworks/textfilcs
* Description: This is the header file used to define the variables
* used in the USERIO subprogram simo. This allows easy
* reconfiguration of the executables by simply changing
* information in the header file. Inputs include altitudes,

* airsp>eeds, the sampling time, selected frequencies and
* and weightings for a sum of sine waves input, labels for the

* inputs, conditions, and states, and the coefficients for the
* numerators and denominators of the system and various filters

* used to generate filtered noi.sc.

* Revisions: -Inclusion of multiple input tj^^es
••»•••«••••••«••»•••«*••••••«*«••••«*••«•««•«••«*•••»•*«••*••••*••••••«•••••/

/• Altitudes in thousands of feet '/

static double altitude[5) =

{

0.0,0.150,0.350,0.0,0.350

};

/* Mach Numbers '/

static double mach[5] =

{

0.4,0.5,0.6,0.8,0.8

/• Sampling Time '/

static double ts= {0.1};

/• Frequencies for sum of sine waves input */

static double freq[8]={

0.005,0.09,0.11,0.65,1.5.2.75,3.0,10.0

};

/* Frequency weighting for sum of sine waves input "/

static double weight[8] =
{

2.0,3.0.2.0,3.0,2.0,3.0,2.0.0.5

};

/* Input, condition, state, and filter labels '/

static char 'input_name[] = {"Illegal Input","Flandoni Binai->".

"Filtered RD","Composite Sine","Swept Square Wave-Test Only",

"Composite Sim","Composite Time"};

static char •condition_name[| = {"Illegal Condition",

"M 0.4/SL", "M 0_5/15K", ".\1 0.6/35K", "M 0.8/SI.". "M 0.8/35K"};

static char •state_name[] = {"Illegal State","u(t)","alphu(t)",

"q(t)", "theta(t)-};

static char *filter_name[l = {"Illegal Filter","0.5]b co".

"0.2 Hz co","Alpha App M 0.5/15K"):

92

/* Numerator coefficients '/

/• Order is ul-u4,al-a4,ql-q4,tl-t4 for the inner indices and

Condition 1-Condition 5 for the outer index */

static double num[5][4][4) =

{
1.248543503451494e-04,

3354904582170337e-04,

-3.247047792447333e-04,

-1.039094082966319e-04,

-6.756262084831643e-02,

8.786514170600235e-02,

2.676626371037605e-02,

^.708037372835860e-02,

-1.173118751144243e + 00,

3.425397067901477e + 00,

-3.331568421196559e + 00,

1.079290104439327e + 00,

-6.06223143641 1736e-02,

5.883590144983231e-02,

5.479098533816495e-02,

-5.301772049566766e-02,

1.73343239750]566e-04,

4.664138711447663e-a4,

^.606405022249405e-04,

-1.38803981 1326403e-04,

-6.509790082128220e-02,

8.131467412035409e-02,

3.246072975226699c -02,

-4.86861 1382480093e-02,

-1.159429186560191e + 00,

3.404538807812190e + 00,

-3.330869731837395e + 00,

1.0857601 10585395e + 00,

-5.95370495876044 2e-02,

5.808824962831594e-02,

5.505421438561653e-02,

-5.361344543414581e-02,

1.683431989607520e-04,

4.42776396034 1835e-a4,

-4.616352316690886e-O4,

-1.351063663521668e-04,

^.275127449734661e-02,

5.171905532394572e-02,

2.4727731 64204334e-02,

-3.369874470285861e-02,

-7.719049115594103e-01,

2.289294061271993e + 00,

-2.26286498423 1 793c + 00,

7.4547583461921 19C-01,

-3.919528344719048e-02,

3.872425877625929C-02,

3.7495294622001 30c -02.

-3.702344394883295e-02,

6.6779573961 72829e-05,

2.425576303810573e-04,

-1.7821 18437363422e-04,

-7.369054508732376e-05,

-9.5275582466444416-02,

1.115637753090919e-01,

6.244296581944 386e-02.

-7.873812158122262e-02,

-1 .767708225383969e + 00,

5.198238987741318e + 00,

-5.093536378204770e + 00,

1.663005615847422e + 00,

-9.111095856528628e-02,

8.9342 16069297385e-02,

8.414788921865490e-02,

-8.239747524425589e-02,

6.677957396172829C-05,

2.425576303810573e-(M,

93

-1.7821 18437363422e-(M,

-7.369054508732376e-05,

-9.5275582466444416-02,

1.115637753090919e-01,

6.244296581944386e-02,

-7.873812158122262e-02,

-1 .7677082253839696 + 00,

5.1982389877413186 + 00,

-5.0935363782047706 + 00,

1.6630056158474226 + 00,

-9.1110958565286286-02,

8.9342160692973856-02,

8.4147889218654906-02,

-S.239747524425589e-02

};

/* Denominator coefficients '/

/* Order is denl-d6n4 for the inner index and Condition l-Condition 5

for the outer index */

static double d6n[5][4] =

{

-3.694923643854825e + 00,

5.1802173047548356 + 00,

-3.2754997356482076 + 00,

7.9021486125678206-01,

-3.7468575133268516+00,

5.32651094854J416e + 00,

-3.4122947502231686 + 00,

8.3264741127281786-01,

-3.851514509136133e + 00,

5.6067101275673156 + 00,

-3.6588174108411046 + 00,

9.036239272554680e-0I,

-3.7121657620933786 + 00,

5.260223167365153e + 00,

-3.3837626476295776 + 00,

8.357099953933538e-01,

-3.7597519758879276 + 00,

5.3745497399655246 + 00,

-3.4696995335319606 + 00,

8_549056369244077e-01

};

/• Coeffieients for filtered noise terms */

/' Order is numl-num3 & den]-den2 for Ihc inner indcv and filierl-

filt6r3 for the outer index '/

static double nois6_co6ff(3][5] =

{

2.0856702512796346-02.

4.171S40502559260e-02,

2.0856702512796346-02,

-15610180758007186 + 00,

6.413515380575631C-01,

5.0636542768597336-03
,

1.0127308553719476-02,

5.0636542768597336-03,

-1 .822694925 1 96308e + 00,

8.371816512560227e-01,

0.0,

-3.3356054972737416-02.

-2.498849406787340c-02,

-1.748500141242948e + 00,

8.3404338237243686-01

};

94

csv2.1

file format is Control Strategy Version 2.1

Source: hiddenO.nnc

Executable: neuralworks professional II

Version: 1.3

Date: 22 November 1989

Author R. W. Scott

Project: Neural Networks in Adaptive Control

En%nronment: UNIX/SunOS/Neuralworks Control Strategy

Path: eileen:/home/rscott/nworks/text files

Description: This is a prototype control strategy for use with

and the simo USERIO program. Tlie recall strategy is not

used. The control and idcntincation strategics determine

sequence in which propagation and learning take place as

as the manner in which layers are altered.

This strategy uses a proprietary language which is covered

in some detail in the Neuralworks Professional II manual.

Revisions: No major revisions

MASK label op-code operandscommcni

L_saR_sa optclr op:bknc ! do not BKp to PIIs w/o conns

L_saR sa trace aux3 ! set trace option to aux3

Li aR sa csct recall.O! recall count

Recall Strategy

L Rsa
L Rsa
L Rsa
L Rsa
L Rsa
L Rsa
L Rsa
L R sa

L R~sa

L Rsa
L Rsa
L R sa

L R~sa

L R~sa

L Rsa
!

! Control

L_aR
L_aR
L_aR
L_aR
L_aR
L_aR
L_aR
L_aR
L_aR
L_aR
L_aR
L_aR
L_aR
L_aR
L_aR
L_aR
L_aR
L_aR
L_aR
L_aR
L_aR
L_aR
L_aR
L aR

Iset

io

Iset

io

Iset

math

Iset

math
Iset

math
Iset

math
Iset

math

io

Strategy

ccmp
bit

Iset

io

Iset

io

Iset

io

Iset

math
Iset

math
Iset

math
io

Iset

math
Iset

math
Iset

math
Iset

math

Iset

m
read

cur.l

read

in

sum|moise
cur,l

sum|moise
cur,l

sumlrnoise

cur,l

sum]moise
cur,l

sumlrnoise

write

!

!

I

I

I

tran

!

tran
t

tran
t

tran

set command layer

get command vector

set feedback layer

get feedback vector

set command layer

|oulput|c = ! fire Isl layer

set feedback layer

|output;c = ! fire 2nd layer

set control la\cr

|outpui]e = ! fire 3rd layer

set plant layer

',ouiput|e=0 ! fire 4ih layer

set reference layer

[output ! fire 5ih layer

write recall result to userio

epoch,auxl ! test for end of sys-id

@id ! branch to id phase

in ! set command layer

Irnin ! gel command vector

cur.l ! set feedback layer

Irnin ! get feedback Ncctor

out ! set reference layer

Imout ! get reference vccio

in ! set command layer

sum|lnoise tran louipul |c = 0] fire ! fire l.sl layer

cur,l ! set feedback layer

sum]lnoise tran |outpul]e =01 fire ! fire 2nd layer

cur.l ! set control layer

sumilnoise tran [output le = 0|nre ! fire 3rd layer

Imrslt ! wnle control result lo userio

cur,l ! SCI plain layer

sumilnoise tran loutpui |e = n] fire ! fire 4ih layer

cur.l ! .scl reference layer

sumilnoise tran louipul]e- = \v|firc ! fire Sih

out ! sci reference layer

ce = e|e* = r Ibackplfire ! bkp .Sih aycr

cur,-l ! set plani layer

cc = c]c* = r Ibackplfire ! bkp -tih a\'cr

cur,-l ! set control layer

95

L aR math ce = e|e* = r]backp|lcani|fire ! bkp 3rd layer

L aR Iset cur,-l ! set control layer

L aR math cc = e|e' = f ;backp|learn|fire ! bkp 3rd layer

System Identification Strategy

L aR
L aR

@id
io

Iset in

Imin

1

1

L aR
L aR

Iset

io

cur.l

Imin

!

!

L aR Iset in 1

L aR math sum]lnoise tran

L aR Iset cur.l !

L aR math sum|lnoise tran

L aR Iset cur,l !

L aR math sum llnoise tran

L aR io Imrsit !

L aR
L aR

Iset

io

cur.l

Imout 1

L aR
L aR

math
io

sum llnoise

Imrsit

tran

!

L aR Iset out !

L aR Iset cur,-l !

L aR math ce = e|e' = r |bac

L aR sa trace !

set command layer

get command vector

set feedback layer

get feedback vector

set command layer

loutpui |c = 0|firc ! fire 1st layer

set feedback layer

loutpui
I
e = 0| fire ! fire 2nd layer

set control layer

loutput |e = 0|fire ! fire 3rd layer

send control inputs to userio

set plant layer

get plant vector from userio

tran loutput |e- = w| fire ! fire 4th

write s\-s id result to userio

set reference layer

set plant layer

backpllearn
I
fire ! bkp/learn 4th

turn off any trace function

96

APPENDIX B: MATLAB M-FILE

% css2dtf.m

% Continuous state space to discrete transfer function conversion.

% Required inputs:

% system continuous a & b matrices

% t - sampling time

%
% Outputs:

% ab, bb, cb balanced state space

% ad, bd discrete matrices

% ns, ds numerator and denominator of discrete transfer function

%
% Convert b from radians to degrees

bx=b*pi/180;
%
% Scale outputs

c=[.02172986525780895,29.358526682723,9.70 19323535787,7.282373233084900];
c=diag(c);

d=zeros(4,l);

%
% Balance a, b, and c matrices

[ab,bb,cb]=obaIreal(a,bx,c);

%
% Convert to discrete time

[ad,bd]=c2d(ab,bb,t);

%
% Convert jto transfer function

[ns,ds]=ss2tf(ad,bd,cb,d, 1);

97

APPENDIX C: CONTINUOUS STATE SPACE EQUATIONS AND DISCRETE MATRIX POLYNOMIALS

Sampling Time of 0.1 Seconds

Flight Condition 1

a =

-1.5154e-02 -2.2559e+00 -3.2174e+01

-3.1672e-04 -8.7896e-01 l.OOOOe+00

1.0825e-04 -9.4643e+00 -1.4604e+00
l.OOOOe+00

b =

-9.09276-02

-1.2848e+01

alt =

u =

4.4658e+02

mach =

4.00006-01

ns =

2.71316-05 7.72486-05 -7,0558e--05 -2.25796-05
-3.46196-02 4.50226-02 1. 37156--02 -2.41246-02
-1.98646-01 5.80026-01 -5.64146 -01 1.82766-01

-7.70526-03 7.47816-03 6.9640e--03 -6.73866-03

ds =

l.OOOOe-i-OO -3.69496-^00 5.1802e+00 -3.27556+00 7.90216-01

98

Flight Condition 2

a =

-1.6751e-02 -1.4926e+01 -3.2174e+01

-2.3639e-04 -6.8474e-01 l.OOOOe+00

6.4590e-05 -8.6540e+00 -I.1300e+00
l.OOOOe+00

b =

-7.1523e-02
-1.2468e+01

alt =

15000

u =

5.2868e+02

mach =

5.0000e-01

ns =

3.7667e-05 1.0135e-04 -l.OOIOe-04 -3.0162e-05
-3.3356e-02 4.l666e-02 1.6633e-02 -2.4947e-02
-1.9633e-01 5.7649e-01 -5.6402e-01 1.8385e-01

~7.5672e-03 7.3831e-03 6.9975e-03 -6.8143e-03

ds =

l.OOOOe+00 -3.7469e+00 5.3265e+00 -3.4123e+00 8.3265e-01

99

Flight Condition 3

a =

-1.0871e-02 -3.5930e+01 -3.2174e+01

-1.3174e-04 -3.6286e-01 l.OOOOe+00

2.0777e-05 -5.2634e+00 -6.3969e-0l

l.OOOOe+00

b =

-4.1024e-02
-8.0491e+00

alt =

35000

u =

5.8388e+02

mach =

6.0000e--01

ns =

3.6581e-05

-2.1906e-02
-1.3071e-0]

-4.9818e-03

9.6215e-05
2.650le-02
3.8765e-01

4.9219e-03

1.0031e-04 -2.9358e-05
1.2671e-02 -I.7267e-02
-3.83I7e-01 1.2623e-01

4.7657e-03 -4.7057e-03

ds =

l.OOOOe+00 -3.8515e+00 5.6067e+00 -3.6588e+00 9.0362e-01

100

Flight Condition 4

a =

-1.4120e-02 1.8216e+01 -3.2174e+01

-1.2471e-04 -6.3225e-01 l.OOOOe+00

3.9715e-05 -1.2887e+01 -1.1484e+00
l.OOOOe+00

b =

-6.2754e-02
-I.9154e+01

alt =

u =

8.9316e+02

mach =

8.0000e-01

ns =

1.4511e-05 5.2707e-05 -3.8725e-05 -1.6013e-05
-4.8819e-02 5.7I66e-02 3.I996e-02 -4.0346e-02
-2.9933e-01 8.8022e-0! -8.6249e-01 2.8160e-01
-1.1580e-02 1.1356e-0: 1.0695e-02 -1.0473e-02

ds =

l.OOOOe+00 -3.7122e+00 5.2602e+00 -3.3838e+00 8.3571e-01

Flight Condition 5

a =

-1.4495e-02 -2.7679e+01 -3.2I74e+01

-1.3174e-04 -5.5219e-01 l.OOOOe+00

3.6568e-05 -9.7906e+00 -l.OOlOe+00

l.OOOOe+00

b =

-5.4699e-02
-1.4552e+0I

alt =

35000

u =

7.7851e+02

mach =

8.0000e-01

ns =

5.5856e-05
-3.7808e-02
-2.3030e-01

-8.8646e-03

1.5033e-04 -1.5l89e-04 -4.5898e-05
4.4639e-02 2.4041e-02 -3.0875e-02
6.7891e-01 -6.6693e-01 2.1832e-01

8.7!06e-03 8.2723e-03 -8.1190e-03

ds =

l.OOOOe+00 -3.7598e+00 5.3745e+00 -3.4697e+00 8.5491e-01

102

INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Technical Information Center 2

Cameron Station

Alexandria, Virginia 22304-6145

2. Library, Code 0142 2

Naval Postgraduate School

Monterey, California 93943-5002

3. Chairman, Code 67 1

Department of Aeronautics and Astronautics

Naval Postgraduate School

Monterey, California 93943-5002

4. Professor D. J. Collins Code 67Co 5

Department of Aeronautics and Astronautics

Naval Postgraduate School

Monterey, California 93943-5002

5. Professor J. P. Hauser Code 67Ha 1

Department of Aeronautics and Astronautics

Naval Postgraduate School

Monterey, California 93943-5002

6. Professor J. Bur! Code 62BI 1

Department of Electrical Engineering
Naval Postgraduate School

Monterey, California 93943-5002

7. LCDR Roger Stemp Code 30 1

Operations Analysis Curricular Officer

Naval Postgraduate School

Monterey, California 93943-5002

8. Mr. Tor Jensen Code 6013 1

Naval Air Development Center
Warminster, Pennsylvania 18974

9. Mr. Joe Gera 1

NASA Dryden Flight Research Center
P. O. Box 273
Mail Code OFDC
Edwards, California 93523

10. Mr. Thomas Momiyama 1

AIR 931

Naval Air Systems Command
Washington,' D.C. 20361-0001

11. Mr. George Derderian
AIR 931E
Naval Air Systems Command
Washington, D.C. 20361-0001

12. LT Russell W. Scott

AIR 54661C
Naval Air Systems Command
Washington, D. C. 20361-0001

CpFf~5n

04

Thesis

S387 Scott
c.l Applications of neural

networks to adaptive
control.

